

PHASE II ESA -SUBSURFACE INVESTIGATION

1926 S. Laramie Avenue Cicero, Illinois 60804 Cook County

Prepared for:

Town of Cicero 4949 West Cermak Road Cicero, Illinois 60804

July 21, 2010

CERTIFICATION

To the best of my knowledge and belief this investigation and evaluation have been performed in conformance with all applicable legal requirements and accepted practices prevailing in the environmental consulting industries. The personnel who performed the investigation are properly licensed and certified in accordance with the requirements of federal, state, and local laws, rules and regulations.

K-Plus Engineering, its officers, and its employees have no present or contemplated interest in the property or the parties involved. Our employment and compensation for preparing this report are not contingent upon any action or event resulting from the analyses, opinions, observations, or conclusions, in or from the use of, this report. The statements contained herein, on which our observations, opinions, and conclusions were based, are deemed factual. The reported analyses, opinions, observations, and conclusions are unbiased, professional, and limited only by the reported assumptions, qualifications, and conditions stated herein. All information in this report is from sources deemed to be reliable; however, no representation or warranty is made as to the accuracy thereof. If necessary, expert testimony and other legal appearances will be provided for a reasonable fee to be arranged.

This report has been prepared specifically for the use by our Client. No third party may use the information in this report without obtaining the permission of both K-Plus Engineering and the client, for whom this report was prepared. In no event may this report be used in whole or in part in any public offering or security without the prior written consent of K-Plus Engineering. No abridgment, abstracting, or excerpting of this report may be made for any purpose whatsoever without obtaining the permission of K-Plus Engineering.

Sincerely,

K-PLUS ENGINEERING, LLC

Jessica Madsen Sr. Project Manager

Daniel M. Caplice, P.E.

M. Caplace

TABLE OF CONTENTS

1.0	INTRODUCTION	
2.0	SUBJECT PROPERTY	2
2.2	2 Site Features	3
2.3		
2.4	Topography	5
2.5		5
3.0	SITE HISTORY	
4.0	METHODS AND EQUIPMENT	9
4.1		
4.2	<u> </u>	
4.3		
4.4		
5.0	SOIL INVESTIGATION FINDINGS	
5.1		
5.2	Soil Analytical Results	12
5.3	· · · · · · · · · · · · · · · · · · ·	
6.0	CONCLUSIONS	

LIST OF FIGURES

Figure 1	-	Site Location Map	2
_		Surrounding Area Map	
_		Topographic Map	
		Stack Unit Map	
\mathcal{C}		Berg Man	

LIST OF APPENDICES

Appendix 1 - Detailed Site Figures

Appendix 2 - Boring Logs

Appendix 3 - Analytical Results Table Appendix 4 - Laboratory Data Sheets Appendix 5 - Inspector Qualifications

1.0 INTRODUCTION

On Tuesday, July 6, 2010, K-Plus Engineering, LLC (K-Plus) conducted a Phase II Environmental Site Assessment - Subsurface Investigation of the industrial property located at 1926 S. Laramie Avenue in Cicero, Illinois (Subject Property). In order to evaluate the subsurface soils, a total of seven (7) soil borings were advanced to a depth of 12 to 16 feet below ground surface (bgs). Analytical testing of the soil samples included: volatile organic compounds (VOCs) including benzene-toluene-ethylbenzene-xylenes (BTEX), RCRA total metals and polynuclear aromatic hydrocarbons (PNAs). This document outlines the investigation activities that were completed by K-Plus at the Subject Property to determine if the historic use of the Subject Property has adversely impacted the subsurface soil.

The weather conditions at the time of the inspection were raining with a temperature of approximately 70 degrees Fahrenheit (°F). As a tool in preparing this report and documenting the conditions encountered at the property, copies of all supporting documents that were relied upon during this project have also been included as appendices in this report.

2.0 SUBJECT PROPERTY

The Subject Property is located north of the intersection between W. 22nd Street and on the west side of South Laramie Avenue. Specifically, the property is located at 1926 South Laramie Avenue in Cicero, Cook County, Illinois (Figure 1).

2.2 Site Features

The Subject Property measures approximately 36,000 square feet (ft²) and is currently developed

used throughout the office areas.

The production area of the building was noted as largely unfinished, with exposed concrete floors, occasional 12-inch vinyl tiles were noted, unfinished walls, and a steel truss ceiling.

The Subject Property uses natural gas supplied by NICOR for the Subject Property's heating system. Commonwealth Edison provides electricity to the building. According to the site contact, the building is connected to the Town of Cicero water and sewer systems. Waste Management removes recyclable wastes from the Subject Property. with a partial two-story industrial building that measures approximately 24,000 ft². The building on the Subject Property was noted as constructed of brick masonry on a concrete slab foundation with a partial basement. An asphalt paved parking lot surrounds the building at the Subject Property.

The front two story partial portion; the front office area was noted as finished with the following: floors were finished with carpeting; the interior walls were painted drywall; the ceilings were finished with 2' x 4' suspended ceiling tiles; and fluorescent lighting was noted

2.3 Surrounding Area

The Subject Property is located in an industrial area. Specifically, the Subject Property is bounded on the **north** by an undeveloped lot, used for a towing yard; on the **south** by an industrial property; on the **east** by Laramie Avenue, followed by similar industrial buildings; and on the **west** by part of an industrial property, followed by an undeveloped lot (Figure 2).



Figure 2 – Site and Surrounding Area (aerial from October, 2007)

2.4 Topography

In general, the topography of the Subject Property is relatively flat, with no discernible elevation changes. According to the United States Geological Survey 7.5 Minute Series Topographic Map of Berwyn, Illinois Quadrangle (1998), the Subject Property lies at a relative surface elevation of approximately 598 feet above mean sea level. The nearest surface water body is South Branch of the Chicago River which is located within $2\frac{1}{2}$ of a mile south of the Subject Property. Regional groundwater flow in the area is expected to flow in a southerly direction (Figure 3).

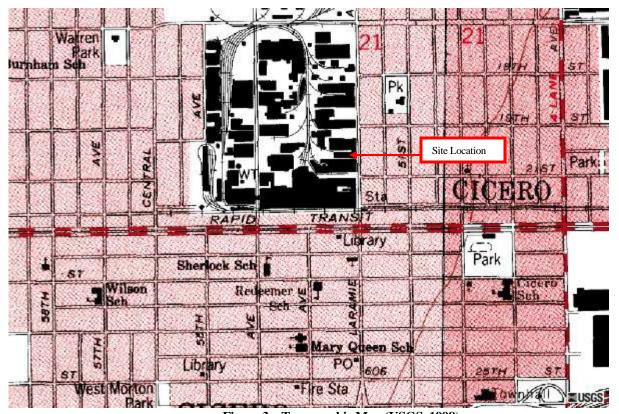
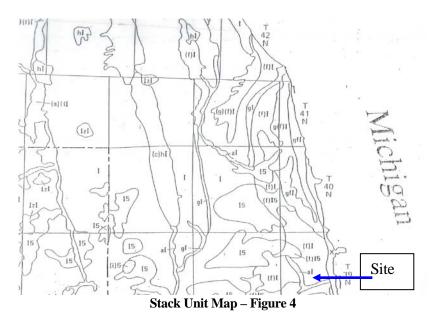


Figure 3 – Topographic Map (USGS, 1998)


2.5 Site Geology

Field observations made during the drilling activities indicated that the subsurface geology at the Subject Property was dominated by brown or gray clayey soils. Specifically, the investigator noted that soils directly below the surface were dominated with native clay materials. From 4 to 8 feet bgs (below ground surface) soils were dominated by brown and gray mottled clay, followed by brown (or gray) soft to firm clay soil, which was identified to a depth of approximately 12 to 16 feet (maximum boring termini). Groundwater was encountered at only one boring on the property at approximately 7 feet. Copies of the boring logs, including the geologic conditions and field observations made during the subsurface assessment, are included in Appendix 2.

In order to categorize and further assess the geologic conditions encountered at the Subject Property, K-Plus consulted various sources of information including geological maps constructed by the Illinois State Geological Survey. Specific geologic maps used during this investigation include Stack-Unit Mapping of Geologic Materials in Illinois to a Depth of 15 Meters; Potential for Contamination of Shallow Aquifers by Land Burial of Municipal Wastes; and Potential for Contamination of Shallow Aquifers by Surface and Near-Surface Waste Disposal.

The "Stack-Unit Map" reviewed was compiled by the Illinois State Geological Survey from information collected as a part of a geological mapping project sponsored by the Illinois Environmental Protection Agency. The Stack-Unit Map is a particular way of representing geological data to show the distribution of earth materials vertically from the surface to a specified depth as well as horizontally over a specified area. This map provides a foundation for interpretive maps for assessing potential for contamination from waste disposal sites; construction conditions; groundwater availability; and potential for mineral resources such as sand, gravel, dolomite, limestone, or near-surface deposits of coal. The map makes possible the evaluation of the potential uses of any material or sequence of materials.

According to the Surficial Geology of the Chicago Region, the geology at the Subject Property consists primarily of soils in the Lake Plain, which consists primarily of floors of glacial lakes flattened by wave erosion and by minor deposition in low areas; largely underlain by glacial till; thin deposits of silt, clay and sand of the Equality Formation present locally. This is corroborated by the Stack-Unit Map, these materials are present at depths greater than approximately 19.7 feet (6 m) thick (Figure 4).

K-Plus also consulted the following geological maps: Potential for Contamination of Shallow Aquifers by Land Burial of Municipal Wastes; and Potential for Contamination of Shallow Aquifers

by Surface and Near-Surface Waste Disposal. These maps were constructed by the Illinois State Geological Survey to describe and map geologic materials to a depth of 50 feet throughout the state. In these maps, various geologic materials were differentiated by thickness, texture, permeability, and stratigraphic position in order to rate their relative contamination potential for aquifers in any area of the state.

According to the Berg Map, the regional geologic materials in the area are designated as type as an "E"-type soil (Figure 4). An "E" classification is described as uniform, relatively impermeable silty and clayey diamictons greater than 50 feet in thickness, with no evidence of interbedded sand and gravel.



Figure 5 - Berg Map

3.0 SITE HISTORY

As part of the investigation of this property, K-Plus conducted a Phase I Environmental Site Assessment, dated December 7, 2009. At the time of the inspection the property was occupied by Defender Door Company. Based on the findings and observations made during the ESA, K-Plus identified the following Recognized Environmental Conditions (RECs).

- Hazardous substances were noted as used and stored in the building at the Subject Property.
- The Subject Property has been utilized for industrial purposes since its development.

It was recommended that further investigation of the Subject Property would be necessary in order to determine what, if any, impact the current and historic industrial operations have had on the subsurface of the Subject Property.

4.0 METHODS AND EQUIPMENT

All borings were completed under the direct supervision of a K-Plus inspector who was on-site during all field work to coordinate the drillers, choose appropriate environmental boring locations and sample depths, collect and screen soil samples, and log the geologic characteristics of each borehole. All drilling work was performed in accordance with applicable provisions of the American Society of Testing Materials (ASTM) standards for environmental and geotechnical drilling, which specify the techniques used for sampling and drilling.

4.1 Drilling

All drilling was completed with a truck-mounted Geoprobe drill rig equipped with a Macro-Core[®] continuous-core sampler. The Geoprobe uses both static and dynamic percussion forces to advance various sampling apparatus to retrieve core samples. The Macro-Core[®] is a solid barrel, open steel tube that is four feet long, has an inside diameter of 2½ inches, and is equipped with a four foot plastic liner for sample collection. The use of sample liners greatly reduces the chance of cross contamination between samples and provides better sample recovery. The details of each boring were recorded on separate logs which contain the following information for each borehole:

- Lithology description for each change in stratum, and the level of each change;
- relative moisture content of each sample interval;
- length of sample recovery from every four feet of Macro-Core[®] sample;
- presence of any water and the level at which it was encountered;
- presence of contamination by field screening; and
- depth of the sample collection.

4.2 Field Screening and Sample Selection

In accordance with ASTM standards and in order to identify soil contamination, the on-site geologist determined the geologic lithology, and constructed a profile of each soil column from the continuous soil samples which were collected using a four foot Macro-Core[®] sampler at four foot intervals from surface level to the boring terminus. Undisturbed soil samples from each Macro-Core[®] were visually classified in the field according to the Unified Soil Classification System (USCS). The characteristics of each sample such as color, odor, texture, relative moisture, sediment type, or disturbance was immediately recorded in the test boring log.

All soil samples recovered during the fieldwork were field screened for the presence of contamination by visual and olfactory assessment, and evaluation using a photo-ionization detector (PID). All field screening observations were recorded on the respective boring logs along with the geologic data.

During the fieldwork, all individual Macro-Core[®] soil samples were immediately placed in sample containers and were labeled to identify the boring location, sample depth, and sample number. Generally, the soil sample from each boring which exhibits the greatest degree of contamination in the field is submitted for laboratory analysis. This methodology is useful when attempting to identify and characterize contamination in a specific area. In certain instances, multiple soil samples may be collected in order to better delineate the vertical extent of contamination. The first sample is collected from the most contaminated material in order to characterize the contamination and determine the concentrations of the specific contaminants, while the other samples are collected from other depths to assist in approximating the vertical extent of the contamination.

In instances where groups of borings from a specific areas of concern exhibit similar evidence of contamination (i.e. similar odor, similar discoloration pattern, etc.), soil samples from the individual borings were selected to provide the most information regarding the extent of contamination in that area. For example, when applicable, at least one soil sample is collected from the most grossly contaminated material in order to establish the types and concentrations of contaminants present. Soil samples from adjacent borings in the same area are often collected from below the obviously contaminated material in an attempt to approximate the vertical extent of the contamination in that area. This approach is effective in establishing the nature and approximate extent of contamination while conserving analytical costs.

4.3 Sample Preservation and Laboratory Analysis

At least one soil sample from each soil boring was selected for laboratory testing. Soil was packed "air tight" and placed into specially prepared glass sample jars equipped with Teflon lined lids for VOCs. Soil samples to be analyzed for VOCs were collected using a 5 gram soil syringe sampling tool. The 5 grams of soil were then immediately transferred to one 40 milliliter (mL) vial containing sodium hydrogen sulfate (NaHSO₄) or Methanol preservatives. Each sample jar or 40 mL vial container was then labeled with a unique sample number to identify the sample's location, boring number, sample depth and date of collection. All samples were immediately preserved in a cooler until receipt by the laboratory for analysis. All samples were transferred to STAT Analysis Corporation (STAT) located in Chicago, Illinois under strict chain-of-custody procedures for analysis of VOCs according to standard United States Environmental Protection Agency (U.S. EPA) methodologies. All analytical testing was performed in accordance with the requirements of the National Environmental Laboratory Accreditation Program (NELAP). All samples were analyzed within established holding times, all quality control testing met U.S. EPA or laboratory criteria, except where noted in the case narrative or analytical report. No data were qualified by the laboratory. All samples were analyzed for the requested parameters; there is no missing data. Where data was questionable when checked by K-Plus personnel, the laboratory was requested to check the data, and if necessary, re-analyze the sample to ensure that the data were accurate. Data meets quality control criteria.

4.4 Decontamination

In order to ensure that no cross-contamination between soil sampling occurs, all non-dedicated sampling equipment was decontaminated after collection of each sample. Sampling equipment was scrubbed with a brush to remove loose material and then washed thoroughly with a laboratory grade detergent and water to remove all particulate matter and surface film. After washing, each piece was rinsed with clean tap water. Dedicated sampling equipment such as plastic scoops, spoons and latex gloves were disposed of after the handling of each sample was complete. Field equipment such as the water level, pH meter and temperature/conductivity meter were rinsed with distilled water between samples.

5.0 SOIL INVESTIGATION FINDINGS

In order to evaluate the subsurface soils, a total of seven (7) soil borings were advanced to a depth of 12 to 16 feet bgs at selected areas of the Subject Property. Soil borings (KP1 through KP7) were performed to determine if the operations at the property, both current and historic, had negative impacts to the subsurface.

5.1 Field Observations

During the field activities, each borehole was evaluated for contaminants using visual and olfactory methods. Field observations indicated that evidence of staining was noted in several borings at the Subject Property. However, olfactory observations did not note significant evidence of contamination.

K-Plus monitored soil borings continuously using a PID. PID readings ranged from 0.0 to 0.2 parts per million (ppm), with the highest reading found in the soil collected from KP2 at 4 feet bgs. Samples for PID analysis were collected from every four foot interval of each boring. The soil borings advanced at the Subject Property revealed subsurface soils that were dominated by soft to firm clayey soils. All borings ended at 12-16 feet bgs in brown (or gray) clay. Detailed boring logs documenting geologic notes and observations made by the K-Plus geologist are included in Appendix 2.

5.2 Soil Analytical Results

K-Plus collected at least one (1) to two (2) soil samples from each soil boring. Samples were taken from intervals that exhibited the highest PID reading, or showed evidence of staining. Additional samples were taken in locations to help delineate any potential contamination that may have been found in the other samples.

For the purposes of this assessment, all soil analytical results were compared to the most stringent Tier I Soil Remediation Objectives (SROs) for residential properties identified in Section 35 Illinois Administrative Code (IAC) Part 742 – Tiered Approach to Corrective Action Objectives (TACO). In general, the SROs outlined in TACO are subdivided into three primary exposure pathways, including the soil ingestion, soil inhalation, and soil component of the groundwater ingestion exposure route (SCGIER). Illinois TACO also has prepared a table (Table G) which outlines inorganic contamination limits that may be typically found in metropolitan areas or areas where inorganic contamination could be naturally occurring. K-Plus compared analytical results to this table. Additionally, K-Plus consulted the IEPA Background Study for PNA levels titled "Polynuclear Aromatic Hydrocarbon Background Study, City of Chicago".

A review of the laboratory analytical data showed that samples KP1A and KP2A, collected from 3-4 feet bgs, identified levels of PNAs above the ingestion soil remedial objective. K-Plus further

evaluated the concentrations of Dibenz(a,h)anthracene and Indeno(1,2,3-cd)pyrene by comparing them to the City of Chicago PNA Background levels. The concentrations at the Subject Property also exceeded the amounts typically seen within the City of Chicago. The deeper sample collected from KP2B at 10-11 feet bgs did not show the same levels of PNA impacts as the shallower sample.

Arsenic was identified in samples KP3A, KP3B, KP5B and KP7B above the Ingestion SRO and above the Background Concentrations (TACO-Table G).

TCLP Lead was identified in sample KP2 above the SCGIER SRO.

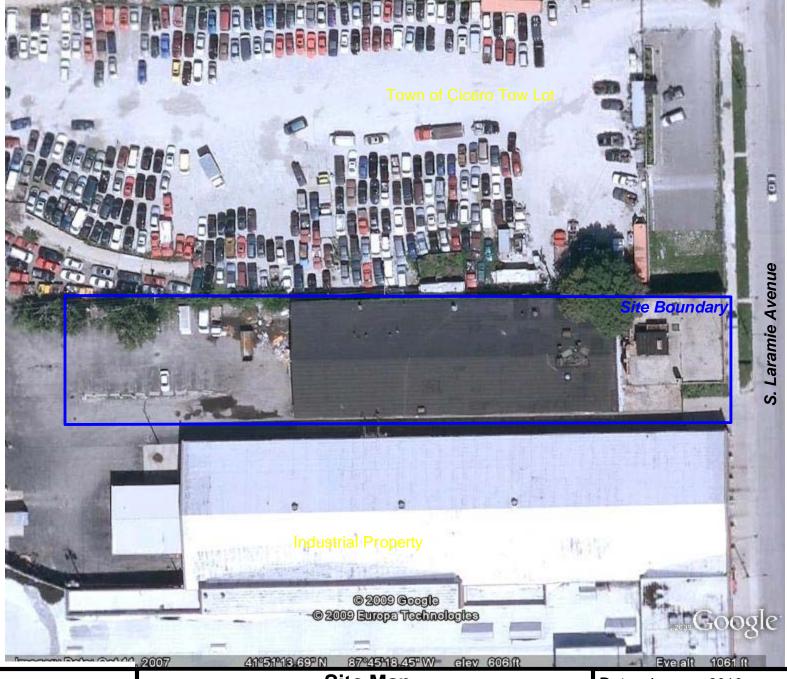
Tables of the soil laboratory analytical results are presented in Appendix 3 and laboratory data sheets are found in Appendix 4.

5.3 Groundwater Analytical Results

K-Plus installed one temporary groundwater monitoring well on July 6, 2010. The temporary groundwater monitoring well was set at depths from 5 foot to 15 foot below grade. The well was purged for approximately three well volumes and never ran dry. K-Plus collected groundwater samples from KP1W. K-Plus analyzed the groundwater collected from sample KP1 for VOC constituents and PNA constituents. No PNA contamination was identified in the groundwater. However, vinyl chloride and cis-1,2 dicholorethene (both daughter products of trichloroethene) were identified in the groundwater above the groundwater remediation objectives. Trichloroethene was identified in the shallow soil sampled from KP1, however it was not identified in concentrations above soil remediation objectives for either Industrial/Commercial properties or Residential properties.

The sample results obtained from KP1W do not pose an immediate threat to human health though because the Town of Cicero is supplied by Lake Michigan water, and has an approved MOU with the Illinois Environmental Protection Agency. This MOU prohibits the installation of potable wells within the Town of Cicero.

6.0 CONCLUSIONS


This investigation was conducted in order to determine the extent of VOC, PNA and RCRA metal contamination at the property located at 1926 S. Laramie Avenue in Cicero, Illinois based on former operations.

K-Plus identified a small area in the parking lot behind the building with low level PNA contamination in the shallow soil samples. Also, K-Plus noted low level arsenic contamination throughout the property; however the elevated presence of arsenic has been noted as consistent throughout the Cicero area based on the surrounding subsurface investigations conducted in the area.

Finally, K-Plus identified low-level solvent contamination in the shallow groundwater sample collected from the northwest corner of the Subject Property.

APPENDIX 1 DETAILED SITE FIGURES

Site Map

1926 S. Laramie Avenue Cicero, Illinois Cook County Date: January 2010

Scale: 0 80 1

Document No. 17094L

Boring Location Map

1926 S. Laramie Avenue Cicero, Illinois Cook County **Date:** July, 2010

Scale: 0 80

Document No. 17094L

APPENDIX 2 BORING LOGS

Suite 320 15 Spinning Wheel Drive Hinsdale, Illinois 60521 312.207.1600

SCREEN

WATER DEPTH

BORING / W	ELL NUMBER										
PROJECT N	UMBER	PROJECT NAME				PROJECT LOCA	TION				
17094L	_	Defender D	oor			1926 S. L	aramie A	venue, Cicero, Illinois			
GEOLOGIST						DRILLING CON		, ,			
Jessica	Madsen					Enviro-D	ynamics, l	Inc.			
DRILLING E	EQUIPMENT / MET	THOD		SIZE / TYPE OF BIT		SAMPLING MET	HOD		START - FINISH	DATE	
Geopro	be			2"		Macro Co	re		7/6/10 - 7	/6/10	
WELL INSTA	ALLED?	CASING MAT. / DIA	AMETER	SCREEN:	TYPE	MATERIAL		LENGTH	DIAMETER	SLOT SIZE	
Yes											
ELEVATION (FT. ABOVE		GROUND SURFACE	Е	TOP OF WELL CASING				TOP & BOTTOM OF SCREEN	GW SURFACE	DATE	
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.			DESCRIPTION		GEO.	WELL CONST.
						asphalt					
							CI				
2		50		no odors		dark brow	n Clay				
				110 04015							
	KP1A		0								
 4	101 171		U		+	l.		. 1 . 2			
						brown and	d gray mo	ttled Clay			
 6		80		no odors							
<u> </u>			0			groundwa	ter noted				
_ 0						soft brown	n Clay				
							,				
10		100		no odors							
			0								
 12					+						
	KP1B					shelby tub	e				
		0.0		,							
 14		90		no odors							
			_								
 16			0								
10						EOB @ 1	6'				
 18											
20					†						
				1		<u> </u>					
							CONCRETE	SAND		RISER	

FILL

SILT

CLAY

Suite 320 15 Spinning Wheel Drive Hinsdale, Illinois 60521 312.207.1600

SCREEN

WATER DEPTH

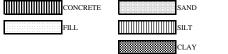
BORING / W	ELL NUMBER									
KP2										
PROJECT N	UMBER	PROJECT NAME				PROJECT LOCATION				
17094I	_	Defender D	oor			1926 S. Laramie	Avenue, Cicero, Illinois			
GEOLOGIS	Γ	l				DRILLING CONTRACTOR				
	Madsen					Enviro-Dynamics	s, Inc.			
DRILLING I	EQUIPMENT / MET	THOD		SIZE / TYPE OF BIT		SAMPLING METHOD		START - FINISH	DATE	
Geopre	be			2"		Macro Core		7/6/10 - 7	/6/10	
WELL INST	ALLED?	CASING MAT. / DIA	AMETER	SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE	
No										
ELEVATION (FT. ABOVE		GROUND SURFACE	Е	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE	
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.
						asphalt/fill				
2		50		no odors		stiff brown Clay				
2		30		no odors						
_	IZDO A		0.2			11. 1 0 1				
 4	KP2A		0.2		4	black Sand				
	KP2TACO					brown and gray n	nottled Clay			
 6		50		no odors						
			0			groundwater note	ed			
8					7	brown Clay				
						blown Clay				
10		100		no odors						
10	KP2B	100		no odors						
_			0							
12			U		4					
						moist gray Clay				
 14		100		no odors						
			0							
 16						EOB @ 16'				
						202 0 10				
 18										
10										
20					1					
						CONCRET	E SAND		RISER	

FILL

SILT

CLAY

	ELL NUMBER									
KP3 PROJECT N	IMPED	PROJECT NAME				PROJECT LOCATION				
17094L		Defender D	oor				ie Avenue, Cicero, Illinois	,		
GEOLOGIST		Detelluel D	001			DRILLING CONTRACTO)		
	Madsen					Enviro-Dynam				
	QUIPMENT / ME	ГНОД		SIZE / TYPE OF BIT		SAMPLING METHOD	103, 1110.	START - FINISH	DATE	
Geopro				2"		Macro Core		7/6/10 - 7		
WELL INST.		CASING MAT. / DIA	AMETER	SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE	
No										
ELEVATION	OF:	GROUND SURFAC	E	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE	
(FT. ABOVE	M.S.L.)	_	1							•
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.
						asphalt				
_		50		,		dark brown Cla	ny			
2		50		no odors						
4			0							
7						brown and gray	mottled Clay			
	KP3A									
 6		90		no odors						
<u> </u>			0			groundwater no	oted			
_ 8					1	soft brown Cla	y			
10		90		no odors						
10	KP3B	90		no odors						
			0							
12						EOB @ 12'				
14										
14]								
 16										
 18										
10										
20					<u> </u>					
20										
							CAND		×	



BORING / W KP4	ELL NUMBER									
PROJECT NU	JMBER	PROJECT NAME				PROJECT LOCATION				
17094L		Defender D	oor				ie Avenue, Cicero, Illinois			
GEOLOGIST		Berenaer B	001			DRILLING CONTRACTOR		<u> </u>		
Jessica	Madsen					Enviro-Dynami	ics, Inc.			
	QUIPMENT / MET	THOD		SIZE / TYPE OF BIT		SAMPLING METHOD	,	START - FINISH	DATE	
Geopro	be			2"		Macro Core		7/6/10 - 7	/6/10	
WELL INSTA		CASING MAT. / DIA	AMETER	SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE	
No										
ELEVATION		GROUND SURFACE	E	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE	
(FT. ABOVE	M.S.L.)	1		T		T				T
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.
						asphalt				
						dark brown Cla	NV			
2		60		no odors		dark brown Cia	iy			
			0							
— 4	KP4A				†	brown and gray	mottled Clay			
	Kr4A					biowii and gray	motticu Ciay			
<u> </u>		50		no odors						
0		30		no odors						
			0			groundwater no	oted			
8			U		4	groundwater ne	ned			
10		100		no odors						
						soft brown Clay	y			
10	KP4B		0							
12						EOB @ 12'				
_										
14										
16					1					
, .										
18		1								
— I										
20					↓					
20										
		•		•	•		CAND		8	•

BORING / W	ELL NUMBER									
KP5										
PROJECT N	JMBER	PROJECT NAME				PROJECT LOCATION				
17094L	,	Defender D	oor			1926 S. Laramie Av	venue, Cicero, Illinois			
GEOLOGIST						DRILLING CONTRACTOR				
Jessica	Madsen					Enviro-Dynamics, I	nc.			
DRILLING E	QUIPMENT / ME	ГНОД		SIZE / TYPE OF BIT		SAMPLING METHOD		START - FINISH	DATE	
Geopro	be			2"		Macro Core		7/6/10 - 7	/6/10	
WELL INST.	ALLED?	CASING MAT. / DIA	AMETER	SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE	
No										
ELEVATION		GROUND SURFACE	Е	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE	
(FT. ABOVE	M.S.L.)									
DEPTH	LAB	RECOVERY	PID	REMARKS	UNIFIED		DESCRIPTION		GEO.	WELL
DEI III	SAMPLE	(%)	(ppm)	KEWAKKS	CLASS.		DESCRII HON		GEO.	CONST.
		(**)	41 /							
						concrete				
2		50		no odors		gravel				
-	KP5A	30		no odors						
_			0			doels bearin Clay				
 4			0		4	dark brown Clay				
 6		90		no odors						
8			0			groundwater noted				
					1					
_										
10		90		no odors						
10		70		no odors						
_	KP5B		0			stiff brown Clay				
12	KI JD	ļ	U							
						EOB @ 12'				
 14		-								
 16					1					
10										
18										
_										
20					4					
					•					

Suite 320 15 Spinning Wheel Drive Hinsdale, Illinois 60521 312.207.1600

SCREEN

WATER DEPTH

	ELL NUMBER									
KP6										
PROJECT N		PROJECT NAME				PROJECT LOCATION				
17094L		Defender D	oor			1926 S. Larar	nie Avenue, Cicero, Illii	nois		
GEOLOGIST						DRILLING CONTRACT	TOR			
	Madsen					Enviro-Dynai	nics, Inc.			
DRILLING E	QUIPMENT / ME	THOD		SIZE / TYPE OF BIT		SAMPLING METHOD		START - FINISH	DATE	
Geopro	be			2"		Macro Core		7/6/10 - 7	/6/10	
WELL INSTA	ALLED?	CASING MAT. / DIA	AMETER	SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE	
No										
ELEVATION		GROUND SURFAC	Е	TOP OF WELL CASING			TOP & BOTTOM OF SCRE	EN GW SURFACE	DATE	
(FT. ABOVE	M.S.L.)	T		1		T				
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.
						concrete				
2		10		no odors		gravel				
_		10		110 00015		dark brown C	lay			
_			0							
<u> </u>			U		4					
	KP6A									
						brown and gr	ay mottled Clay			
 6		70		no odors			,			
			0			groundwater	noted			
8		†			-					
						brown Clay				
		60		no odors						
12	KP6B		0							
12						EOB @ 12'				
_										
 14		1								
 16					4					
 18		-								
[
20					†					
						<u> </u>				
						CON	CRETE SAND		RISER	

FILL

SILT

CLAY

BORING / W KP7	ELL NUMBER												
PROJECT NU	JMBER	PROJECT NAME				PROJECT LOCATION							
17094L	4	Defender D	oor			1926 S. Laramie	Avenue, Cicero, Illinois						
GEOLOGIST	,	1				DRILLING CONTRACTOR	· · · · · · · · · · · · · · · · · · ·						
Jessica	Madsen					Enviro-Dynamic	s, Inc.						
DRILLING E	QUIPMENT / ME	THOD		SIZE / TYPE OF BIT		SAMPLING METHOD		START - FINISH	DATE				
Geopro	be			2"		Macro Core							
WELL INSTA	ALLED?	CASING MAT. / DIA	AMETER	SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE				
No													
ELEVATION (FT. ABOVE		GROUND SURFACE	Е	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE				
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.			
						concrete							
2		30		no odors		gravel							
_				110 04015		dark brown Clay							
			0										
			0		4								
	KP7A												
						brown and gray i	nottled Clay						
 6		90		no odors			•						
8			0		1	groundwater note	ed						
_ 0					Ī								
_						& 1 C1							
10		100		no odors		soft brown Clay							
<u> </u>	KP7B		0			brown Sand							
12						EOB @ 12'							
_													
14		4											
 16					†								
10													
18	_]											
-													
20					4								

APPENDIX 3 ANALYTICAL RESULT TABLES

 Laboratory ID :
 10070107-001
 10070107-003
 10070107-004
 10070107-005

 Client Sample ID :
 KP1A
 KP2A
 KP2B
 KP2TACO

 Date Collected :
 07/06/2010 08:10
 07/06/2010 08:40
 07/06/2010 08:40
 07/06/2010 08:40
 07/06/2010 08:40

			Industrial/	Commercial	Constructi	on Worker	Soil Com			//00/2010 08.10	07/00/2010 00.40	07/00/2010 08:40 07/00/2010 08:40
				cific Values		on worker cific Values	Groundwate					
			-	Soil	-		Exposure R					
	CAS No.	Analyte	Ingestion	Inhalation	for Soil Ingestion Inhalation		Class I	Class II	ADL			
VOC	67-64-1	Acetone	ingestion	100,000	ingestion	100,000	25	25	ADL	< 0.074	< 0.071	< 0.067
VOC	71-43-2	Benzene	100	1.6	2,300	2.2	0.03	0.17		0.0058	< 0.0047	< 0.0045
	75-27-4	Bromodichloromethane	92	3,000	2,000	3,000	0.6	0.6		< 0.0049	< 0.0047	< 0.0045
	75-25-2	Bromoform	720	100	16,000	140	0.8	0.8		< 0.0049	< 0.0047	< 0.0045
	74-83-9	Bromomethane	2,900	15	1,000	3.9	0.2	1.2		< 0.0099	< 0.0094	< 0.009
	78-93-3	2-Butanone	2,700	13	1,000	3.7	0.2	1.2		< 0.074	< 0.071	< 0.067
	75-15-0	Carbon disulfide	200,000	720	20.000	9.0	32	160		< 0.049	< 0.047	< 0.045
	56-23-5	Carbon tetrachloride	44	0.64	410	0.90	0.07	0.33		< 0.0049	< 0.0047	< 0.0045
	108-90-7	Chlorobenzene	41,000	210	4,100	1.3	1	6.5		< 0.0049	< 0.0047	< 0.0045
	75-00-3	Chloroethane	,		.,					< 0.0099	< 0.0094	< 0.009
	67-66-3	Chloroform	940	0.54	2,000	0.76	0.6	2.9		< 0.0049	< 0.0047	< 0.0045
	74-87-3	Chloromethane			_,					< 0.0099	< 0.0094	< 0.009
	124-48-1	Dibromochloromethane	41,000	1,300	41,000	1,300	0.4	0.4		< 0.0049	< 0.0047	< 0.0045
	75-34-3	1.1-Dichloroethane	200,000	1,700	200,000	130	23	110		< 0.0049	< 0.0047	< 0.0045
	107-06-2	1,2-Dichloroethane	63	0.70	1,400	0.99	0.02	0.1		< 0.0049	< 0.0047	< 0.0045
	75-35-4	1,1-Dichloroethene	100,000	470	10,000	3.0	0.06	0.3		< 0.0049	< 0.0047	< 0.0045
	156-59-2	cis-1,2-Dichloroethene	20,000	1,200	20,000	1,200	0.4	1.1		< 0.0049	< 0.0047	< 0.0045
	156-60-5	trans-1,2-Dichloroethene	41,000	3,100	41,000	3,100	0.7	3.4		0.0051	< 0.0047	< 0.0045
	78-87-5	1,2-Dichloropropane	84	23	1,800	0.50	0.03	0.15		< 0.0049	< 0.0047	< 0.0045
	10061-01-5	cis-1,3-Dichloropropene	57	2.1	1,200	0.39	0.004	0.02	0.005	< 0.002	< 0.0019	< 0.0018
	10061-02-6	trans-1,3-Dichloropropene	57	2.1	1,200	0.39	0.004	0.02	0.005	< 0.002	< 0.0019	< 0.0018
	100-41-4	Ethylbenzene	200,000	400	20,000	58	13	19		< 0.0049	< 0.0047	< 0.0045
	591-78-6	2-Hexanone								< 0.02	< 0.019	< 0.018
	108-10-1	4-Methyl-2-pentanone								< 0.02	< 0.019	< 0.018
	75-09-2	Methylene chloride	760	24	12,000	34	0.02	0.2		< 0.0099	< 0.0094	< 0.009
	1634-04-4	Methyl tert-butyl ether	20,000	8,800	2,000	140	0.32	0.32		< 0.0049	< 0.0047	< 0.0045
	100-42-5	Styrene	410,000	1,500	41,000	430	4	18		< 0.0049	< 0.0047	< 0.0045
	79-34-5	1,1,2,2-Tetrachloroethane								< 0.0049	< 0.0047	< 0.0045
	127-18-4	Tetrachloroethene	110	20	2,400	28	0.06	0.3		< 0.0049	< 0.0047	< 0.0045
	108-88-3	Toluene	410,000	650	410,000	42	12	29		< 0.0049	< 0.0047	< 0.0045
	71-55-6	1,1,1-Trichloroethane		1,200		1,200	2	9.6		< 0.0049	< 0.0047	< 0.0045
	79-00-5	1,1,2-Trichloroethane	8,200	1,800	8,200	1,800	0.02	0.3		< 0.0049	< 0.0047	< 0.0045
	79-01-6	Trichloroethene	520	8.9	1,200	12	0.06	0.3		0.0075	< 0.0047	< 0.0045
	75-01-4	Vinyl chloride	7.9	1.1	170	1.1	0.01	0.07		< 0.0049	< 0.0047	0.0056
	1330-20-7	Xylenes, Total	410,000	320	41,000	5.6	150	150		< 0.015	< 0.014	< 0.013

										10070107-001	10070107-003	10070107-004	10070107-005
								Client Sample		KP1A	KP2A	KP2B	KP2TACO
						*** .			ctea :	07/06/2010 08:10	07/06/2010 08:40	07/06/2010 08:40	07/06/2010 08:40
			Industrial/C		Constructi		Soil Comp						
			Route Speci		Route Spec		Groundwate						
	CACN	A 1.	for S		for		Exposure Ro		ADI				
DNIA	CAS No. 83-32-9	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I 570		ADL	. 0. 027	. 0. 027	< 0.028	
PNA	83-32-9 208-96-8	Acenaphthene	120,000		120,000		5/0	2,900		< 0.037 < 0.037	< 0.037 0.071	< 0.028 < 0.028	
	120-12-7	Acenaphthylene	C10 000		C10 000		12,000	50,000		< 0.037		< 0.028	
	120-12-7 56-55-3	Anthracene Benz(a)anthracene	610,000 8		610,000 170		12,000 2	59,000 8		< 0.037	0.35 1.3	< 0.028 < 0.028	
	50-33-3	* /	0.8		170		8	82		2.3	0.83	< 0.028	
	205-99-2	Benzo(a)pyrene Benzo(b)fluoranthene	0.8 8		170		8 5	25		2.5	1.2	< 0.028	
	191-24-2	Benzo(g,h,i)perylene	0		170		3	23		2.8	0.83	< 0.028	
	207-08-9	Benzo(k)fluoranthene	78		1,700		49	250		1.7	1.2	< 0.028	
	218-01-9	Chrysene	780		17,000		160	800		1.7	1.3	< 0.028	
	53-70-3	Dibenz(a,h)anthracene	0.8		17,000		2	7.6		0.96	0.33	< 0.028	
	206-44-0	Fluoranthene	82,000		82,000		4,300	21,000		0.99	2.3	< 0.028	
	86-73-7	Fluorene	82,000		82,000		560	2,800		< 0.037	0.12	< 0.028	
	193-39-5	Indeno(1,2,3-cd)pyrene	8		170		14	69		1.9	0.73	< 0.028	
	91-20-3	Naphthalene	41,000	270	4.100	1.8	12	18		0.041	< 0.037	< 0.028	
	85-01-8	Phenanthrene	41,000	270	4,100	1.0	12	10		0.18	1	< 0.028	
	129-00-0	Pyrene	61,000		61,000		4,200	21,000		1.1	2	< 0.028	
INORG	7440-38-2		13.0/11.3	1,200	61	25,000	4,200	21,000		4.3	11	5.3	
1110110	7440-39-3		140,000	910,000	14,000	870,000				39	42	29	
	7440-43-9		2,000	2,800	200	59,000				< 0.52	< 0.54	< 0.52	
		Chromium	6,100	420	4,100	690				12	17	17	
	7439-92-1		800		700					34	22	12	
	7439-97-6	Mercury	610	16	61	0.1				< 0.027	< 0.027	< 0.027	
	7782-49-2	Selenium	10,000		1,000					< 1	< 1.1	< 1	
	7440-22-4	Silver	10,000		1,000					< 1	< 1.1	< 1	
TCLP	7440-38-2	Arsenic					0.05	0.2					< 0.01
	7440-39-3	Barium					2.0	2.0					0.17
	7440-43-9	Cadmium					0.005	0.05					< 0.005
	7440-47-3	Chromium					0.1	1.0					< 0.01
	7439-92-1	Lead					0.0075	0.1					0.026
	7439-97-6	Mercury					0.002	0.01					< 0.0002
	7782-49-2	Selenium					0.05	0.05					< 0.01
	7440 22 4	0.1					0.05						. 0.01

0.05

7440-22-4 Silver

< 0.01

 Laboratory ID :
 10070107-006
 10070107-007
 10070107-008
 10070107-009

 Client Sample ID :
 KP3A
 KP3B
 KP4A
 KP4B

 Date Collected :
 07/06/2010 09:00 07/06/2010 09:00 07/06/2010 09:20 07/06/2010 09:20
 07/06/2010 09:20 07/06/2010 09:20

							Date Collected: 07/06/2010 09:00 07/06/2010 09:00 07/06/2010 09:20 07/06/2010 09:20						
			Industrial/C		Constructi			nponent of					
			Route Spec		Route Spec			ter Ingestion					
			for S			for Soil		Route Values					
	CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	ADL				
VOC	67-64-1	Acetone		100,000		100,000	25	25		< 0.076	< 0.07	< 0.067	< 0.073
	71-43-2	Benzene	100	1.6	2,300	2.2	0.03	0.17		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	75-27-4	Bromodichloromethane	92	3,000	2,000	3,000	0.6	0.6		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	75-25-2	Bromoform	720	100	16,000	140	0.8	0.8		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	74-83-9	Bromomethane	2,900	15	1,000	3.9	0.2	1.2		< 0.01	< 0.0094	< 0.0089	< 0.0098
	78-93-3	2-Butanone								< 0.076	< 0.07	< 0.067	< 0.073
	75-15-0	Carbon disulfide	200,000	720	20,000	9.0	32	160		< 0.051	< 0.047	< 0.045	< 0.049
	56-23-5	Carbon tetrachloride	44	0.64	410	0.90	0.07	0.33		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	108-90-7	Chlorobenzene	41,000	210	4,100	1.3	1	6.5		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	75-00-3	Chloroethane								< 0.01	< 0.0094	< 0.0089	< 0.0098
	67-66-3	Chloroform	940	0.54	2,000	0.76	0.6	2.9		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	74-87-3	Chloromethane								< 0.01	< 0.0094	< 0.0089	< 0.0098
	124-48-1	Dibromochloromethane	41,000	1,300	41,000	1,300	0.4	0.4		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	75-34-3	1,1-Dichloroethane	200,000	1,700	200,000	130	23	110		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	107-06-2	1,2-Dichloroethane	63	0.70	1,400	0.99	0.02	0.1		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	75-35-4	1,1-Dichloroethene	100,000	470	10,000	3.0	0.06	0.3		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	156-59-2	cis-1,2-Dichloroethene	20,000	1,200	20,000	1,200	0.4	1.1		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	156-60-5	trans-1,2-Dichloroethene	41,000	3,100	41,000	3,100	0.7	3.4		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	78-87-5	1,2-Dichloropropane	84	23	1,800	0.50	0.03	0.15		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	10061-01-5	cis-1,3-Dichloropropene	57	2.1	1,200	0.39	0.004	0.02	0.005	< 0.002	< 0.0019	< 0.0018	< 0.002
	10061-02-6	trans-1,3-Dichloropropene	57	2.1	1,200	0.39	0.004	0.02	0.005	< 0.002	< 0.0019	< 0.0018	< 0.002
	100-41-4	Ethylbenzene	200,000	400	20,000	58	13	19		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	591-78-6	2-Hexanone								< 0.02	< 0.019	< 0.018	< 0.02
	108-10-1	4-Methyl-2-pentanone								< 0.02	< 0.019	< 0.018	< 0.02
	75-09-2	Methylene chloride	760	24	12,000	34	0.02	0.2		< 0.01	< 0.0094	< 0.0089	< 0.0098
	1634-04-4	Methyl tert-butyl ether	20,000	8,800	2,000	140	0.32	0.32		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	100-42-5	Styrene	410,000	1,500	41,000	430	4	18		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	79-34-5	1,1,2,2-Tetrachloroethane								< 0.0051	< 0.0047	< 0.0045	< 0.0049
	127-18-4	Tetrachloroethene	110	20	2,400	28	0.06	0.3		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	108-88-3	Toluene	410,000	650	410,000	42	12	29		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	71-55-6	1,1,1-Trichloroethane		1,200		1,200	2	9.6		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	79-00-5	1,1,2-Trichloroethane	8,200	1,800	8,200	1,800	0.02	0.3		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	79-01-6	Trichloroethene	520	8.9	1,200	12	0.06	0.3		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	75-01-4	Vinyl chloride	7.9	1.1	170	1.1	0.01	0.07		< 0.0051	< 0.0047	< 0.0045	< 0.0049
	1330-20-7	Xylenes, Total	410,000	320	41,000	5.6	150	150		< 0.015	< 0.014	< 0.013	< 0.015

								Laboratory II Client Sample II		006 10070107-007 KP3B	10070107-008 KP4A	10070107-009 KP4B
										9:00 07/06/2010 09:00		
			Industrial/Commercial Route Specific Values for Soil		Construction Worker Route Specific Values for Soil		Soil Component of Groundwater Ingestion Exposure Route Values		1. 07/00/2010 0	2.00 07/00/2010 02:00	07/00/2010 07:20	7 077 007, 2010 07, 20
	CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II Al	DL			
PNA	83-32-9	Acenaphthene	120,000		120,000		570	2,900	0.04	< 0.031	< 0.031	< 0.03
	208-96-8	Acenaphthylene							< 0.032		< 0.031	< 0.03
	120-12-7	Anthracene	610,000		610,000		12,000	59,000	< 0.032		< 0.031	< 0.03
	56-55-3	Benz(a)anthracene	8		170		2	8	< 0.032		< 0.031	< 0.03
	50-32-8	Benzo(a)pyrene	0.8		17		8	82	< 0.032		< 0.031	< 0.03
	205-99-2	Benzo(b)fluoranthene	8		170		5	25	< 0.032		< 0.031	< 0.03
	191-24-2	Benzo(g,h,i)perylene							< 0.032		< 0.031	< 0.03
	207-08-9	Benzo(k)fluoranthene	78		1,700		49	250	< 0.032		< 0.031	< 0.03
	218-01-9	Chrysene	780		17,000		160	800	0.05	< 0.031	< 0.031	< 0.03
	53-70-3	Dibenz(a,h)anthracene	0.8		17		2	7.6	< 0.032		< 0.031	< 0.03
	206-44-0	Fluoranthene	82,000		82,000		4,300	21,000	< 0.032	< 0.031	< 0.031	< 0.03
	86-73-7	Fluorene	82,000		82,000		560	2,800	0.04	< 0.031	< 0.031	< 0.03
	193-39-5	Indeno(1,2,3-cd)pyrene	8		170		14	69	< 0.032	< 0.031	< 0.031	< 0.03
	91-20-3	Naphthalene	41,000	270	4,100	1.8	12	18	< 0.032	< 0.031	< 0.031	< 0.03
	85-01-8	Phenanthrene							0.032	< 0.031	< 0.031	< 0.03
	129-00-0	Pyrene	61,000		61,000		4,200	21,000	0.04	< 0.031	< 0.031	< 0.03
INORG	7440-38-2	Arsenic	13.0/11.3	1,200	61	25,000			13	18	8.3	7.7
	7440-39-3	Barium	140,000	910,000	14,000	870,000			130	51	80	38
	7440-43-9	Cadmium	2,000	2,800	200	59,000			< 0.6	< 0.58	< 0.61	< 0.56
	7440-47-3	Chromium	6,100	420	4,100	690			30	20	27	22
	7439-92-1	Lead	800		700				24	21	21	14
	7439-97-6	Mercury	610	16	61	0.1			< 0.031	< 0.029	< 0.029	< 0.03
	7782-49-2	Selenium	10,000		1,000				< 1.2	< 1.2	< 1.2	< 1.1
	7440-22-4	Silver	10,000		1,000				< 1.2	< 1.2	< 1.2	< 1.1
TCLP	7440-38-2	Arsenic					0.05	0.2				
	7440-39-3	Barium					2.0	2.0				
	7440-43-9	Cadmium					0.005	0.05				
	7440-47-3	Chromium					0.1	1.0				
	7439-92-1	Lead					0.0075	0.1				
	7439-97-6	Mercury					0.002	0.01				
	7782-49-2	Selenium					0.05	0.05				
	7440-22-4	Silver					0.05					

Laboratory ID: 10070107-010 10070107-011 10070107-012 10070107-013 10070107-014 10070107-015

Client Sample ID: KP5A KP5B KP6A KP6B KP7A KP7B Date Collected: 07/06/2010 09:45 07/06/2010 09:45 07/06/2010 10:15 07/06/2010 10:15 07/06/2010 10:30 07/06/2010 10:30 Construction Worker Industrial/Commercial Soil Component of Route Specific Values Route Specific Values Groundwater Ingestion for Soil for Soil Exposure Route Values CAS No. Ingestion Inhalatio Ingestion Inhalation Class I Class II Analyte VOC 67-64-1 Acetone 100,000 100,000 25 25 < 0.074 < 0.069 < 0.067 < 0.07 < 0.078 < 0.07 71-43-2 Benzene 100 2,300 2.2 0.03 0.17 < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0052 < 0.0046 1.6 0.6 75-27-4 Bromodichloromethane 92 3,000 2,000 3,000 0.6 < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0052 < 0.0046 75-25-2 Bromoform 720 100 16,000 140 0.8 0.8 < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0052 < 0.0046 74-83-9 Bromomethane 2,900 15 1.000 3.9 0.2 1.2 < 0.0098 < 0.0092 < 0.0089 < 0.0093 < 0.01 < 0.0093 78-93-3 2-Butanone < 0.074 < 0.069 < 0.067 < 0.07 < 0.078 < 0.07 75-15-0 Carbon disulfide 200,000 720 20,000 9.0 32 160 < 0.049 < 0.046 < 0.045 < 0.047 < 0.052 < 0.046 56-23-5 Carbon tetrachloride 44 0.64 410 0.90 0.07 0.33 < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0052 < 0.0046 108-90-7 Chlorobenzene 41,000 210 4,100 < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0052 < 0.0046 1.3 1 6.5 75-00-3 Chloroethane < 0.0098 < 0.0092 < 0.0089 < 0.0093 < 0.01 < 0.0093 67-66-3 Chloroform 940 0.54 2,000 0.76 0.6 2.9 < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0052 < 0.0046 74-87-3 Chloromethane < 0.0098 < 0.0092 < 0.0089 < 0.0093 < 0.01 < 0.0093 124-48-1 Dibromochloromethane 41,000 1,300 41,000 1,300 0.4 0.4 < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0052 < 0.0046 75-34-3 1,1-Dichloroethane 200,000 1,700 200,000 130 23 110 < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0052 < 0.0046 107-06-2 1.2-Dichloroethane 0.70 0.99 0.02 < 0.0046 < 0.0045 < 0.0047 < 0.0052 < 0.0046 63 1,400 0.1 < 0.0049 75-35-4 1.1-Dichloroethene < 0.0052 100,000 470 10,000 3.0 0.06 0.3 < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0046 156-59-2 cis-1,2-Dichloroethene < 0.0046 < 0.0052 20,000 1,200 20,000 1,200 0.4 1.1 < 0.0049 < 0.0045 0.014 < 0.0046 156-60-5 trans-1.2-Dichloroethene 41.000 3.100 41,000 3,100 < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0052 < 0.0046 0.7 34 84 23 0.15 < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0052 78-87-5 1,2-Dichloropropane 1.800 0.50 0.03 < 0.0046 57 10061-01-5 cis-1,3-Dichloropropene 2.1 1,200 0.39 0.004 0.02 0.005 < 0.002 < 0.0018 < 0.0018 < 0.0019 < 0.0021 < 0.0019 < 0.0019 10061-02-6 trans-1,3-Dichloropropene 57 2.1 1,200 0.39 0.004 0.02 0.005 < 0.002 < 0.0018 < 0.0018 < 0.0021 < 0.0019 100-41-4 Ethylbenzene 200,000 400 20,000 58 13 19 < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0052 < 0.0046 591-78-6 2-Hexanone < 0.02 < 0.018 < 0.018 < 0.019 < 0.021 < 0.019 108-10-1 4-Methyl-2-pentanone < 0.02 < 0.018 < 0.018 < 0.019 < 0.021 < 0.019 75-09-2 Methylene chloride 760 24 12,000 34 0.02 0.2 < 0.0098 < 0.0092 < 0.0089 < 0.0093 < 0.01 < 0.0093 1634-04-4 Methyl tert-butyl ether 20,000 8,800 2,000 140 0.32 0.32 < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0052 < 0.0046 100-42-5 Styrene 410,000 1,500 41,000 430 4 18 < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0052 < 0.0046 79-34-5 1,1,2,2-Tetrachloroethane < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0052 < 0.0046 127-18-4 Tetrachloroethene 110 20 2,400 28 0.06 0.3 < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0052 < 0.0046 108-88-3 Toluene 410,000 650 410,000 42 12 29 < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0052 < 0.0046 71-55-6 1,1,1-Trichloroethane 1,200 1,200 2 9.6 < 0.0049 < 0.0046 < 0.0045 < 0.0047 < 0.0052 < 0.0046

0.3

0.3

0.07

150

< 0.0049

< 0.0049

< 0.0049

< 0.015

< 0.0046

< 0.0046

< 0.0046

< 0.014

< 0.0045

< 0.0045

< 0.0045

< 0.013

< 0.0047

0.0093

< 0.0047

< 0.014

< 0.0052

< 0.0052

< 0.0052

< 0.016

< 0.0046

< 0.0046

< 0.0046

< 0.014

79-00-5

79-01-6

75-01-4

1,1,2-Trichloroethane

Trichloroethene

Vinyl chloride

1330-20-7 Xylenes, Total

8,200

520

7.9

410,000

1,800

8.9

1.1

320

8,200

1,200

170

41,000

1,800

12

1.1

5.6

0.02

0.06

0.01

150

								-	ID: 10070107-0		10070107-012	10070107-013	10070107-014	10070107-015
								Client Sample		KP5B	KP6A	KP6B	KP7A	KP7B
								Date Collect	ed: 07/06/2010 0	09:45 07/06/2010 09:45	07/06/2010 10:15	07/06/2010 10:15	07/06/2010 10:30	07/06/2010 10:30
		Industrial/Commercial Construction Worker				ponent of								
		Route Specific Values		Route Specific Values		Groundwater Ingestion								
			for Soil		for Soil			oute Values						
	CAS No.	Analyte	Ingestion	Inhalation		Inhalation	Class I		ADL					
PNA	83-32-9	Acenaphthene	120,000		120,000		570	2,900	< 0.031	< 0.031	< 0.03	< 0.031	< 0.031	< 0.028
	208-96-8	Acenaphthylene							< 0.031	< 0.031	< 0.03	< 0.031	< 0.031	< 0.028
	120-12-7	Anthracene	610,000		610,000		12,000	59,000	< 0.031		< 0.03	< 0.031	< 0.031	< 0.028
	56-55-3	Benz(a)anthracene	8		170		2	8	< 0.031	< 0.031	< 0.03	< 0.031	< 0.031	< 0.028
	50-32-8	Benzo(a)pyrene	0.8		17		8	82	< 0.031	< 0.031	< 0.03	< 0.031	< 0.031	< 0.028
	205-99-2	Benzo(b)fluoranthene	8		170		5	25	< 0.031	< 0.031	< 0.03	< 0.031	< 0.031	< 0.028
	191-24-2	Benzo(g,h,i)perylene			. =				< 0.031	< 0.031	< 0.03	< 0.031	< 0.031	< 0.028
	207-08-9	Benzo(k)fluoranthene	78		1,700		49	250	< 0.031	< 0.031	< 0.03	< 0.031	< 0.031	< 0.028
	218-01-9	Chrysene	780		17,000		160	800	< 0.031	< 0.031	< 0.03	< 0.031	< 0.031	< 0.028
	53-70-3 206-44-0	Dibenz(a,h)anthracene	0.8 82.000		17 82,000		2 4.300	7.6	< 0.031	< 0.031 < 0.031	< 0.03 < 0.03	< 0.031	< 0.031 < 0.031	< 0.028
		Fluoranthene	- ,		. ,		4,300 560	21,000	< 0.031			< 0.031		< 0.028
	86-73-7 193-39-5	Fluorene	82,000 8		82,000 170		560 14	2,800 69	< 0.031 < 0.031	< 0.031 < 0.031	< 0.03 < 0.03	< 0.031 < 0.031	< 0.031 < 0.031	< 0.028 < 0.028
	91-20-3	Indeno(1,2,3-cd)pyrene	41,000	270		1.8	14	18	< 0.031	< 0.031	< 0.03	< 0.031	< 0.031	< 0.028
	91-20-3 85-01-8	Naphthalene Phenanthrene	41,000	270	4,100	1.8	12	18	< 0.031	< 0.031	< 0.03	< 0.031	< 0.031	< 0.028
	129-00-0	Pyrene	61,000		61,000		4.200	21,000	< 0.031	< 0.031	< 0.03	< 0.031	< 0.031	< 0.028
INODO	7440-38-2		13.0/11.3	1.200	61	25.000	4,200	21,000	8.1	12	5.9	9.4	6.6	14
INOK	7440-38-2		140,000	910,000	14,000	870,000			54	72	83	77	71	17
	7440-43-9		2,000	2,800	200	59,000			< 0.59	< 0.55	< 0.54	< 0.59	< 0.59	< 0.51
		Chromium	6,100	420	4,100	690			30	21	27	18	27	15
	7439-92-1		800		700				16	13	22	16	23	20
	7439-97-6		610	16	61	0.1			< 0.03	< 0.03	0.032	< 0.028	< 0.029	0.029
	7782-49-2	•	10,000		1.000				< 1.2	< 1.1	< 1.1	< 1.2	< 1.2	< 1
	7440-22-4		10,000		1,000				< 1.2	< 1.1	< 1.1	< 1.2	< 1.2	< 1
TCLP	7440-38-2	Arsenic	-,		,		0.05	0.2						
	7440-39-3	Barium					2.0	2.0						
	7440-43-9	Cadmium					0.005	0.05						
		Chromium					0.1	1.0						
	7439-92-1	Lead					0.0075	0.1						
	7439-97-6	Mercury					0.002	0.01						
	7782-49-2	Selenium					0.05	0.05						
	7440-22-4	Silver					0.05							

Groundwater Results Table

 Laboratory ID :
 10070107-016

 Client Sample ID :
 KP1W

 Date Collected :
 07/06/2010 11:00

					ndwater	
				Remediation	on Objective	
	CAS No.	Analyte	Units	Class I	Class II	
VOC	67-64-1	Acetone	mg/L	6.3	6.3	< 0.1
	71-43-2	Benzene	mg/L	0.005	0.025	< 0.025
	75-27-4	Bromodichloromethane	mg/L	0.0002	0.0002	< 0.025
	75-25-2	Bromoform	mg/L	0.001	0.001	< 0.025
	74-83-9	Bromomethane	mg/L	0.0098	0.049	< 0.05
	78-93-3	2-Butanone	mg/L			< 0.1
	75-15-0	Carbon disulfide	mg/L	0.7	3.5	< 0.05
	56-23-5	Carbon tetrachloride	mg/L	0.005	0.025	< 0.025
	108-90-7	Chlorobenzene	mg/L	0.1	0.5	< 0.025
	75-00-3	Chloroethane	mg/L			< 0.05
	67-66-3	Chloroform	mg/L	0.0002	0.001	< 0.025
	74-87-3	Chloromethane	mg/L			< 0.05
	124-48-1	Dibromochloromethane	mg/L	0.14	0.14	< 0.025
	75-34-3	1,1-Dichloroethane	mg/L	0.7	3.5	< 0.025
	107-06-2	1,2-Dichloroethane	mg/L	0.005	0.025	< 0.025
	75-35-4	1,1-Dichloroethene	mg/L	0.007	0.035	< 0.025
	156-59-2	cis-1,2-Dichloroethene	mg/L	0.07	0.2	0.62
	156-60-5	trans-1,2-Dichloroethene	mg/L	0.1	0.5	0.044
	78-87-5	1,2-Dichloropropane	mg/L	0.005	0.025	< 0.025
	10061-01-5	cis-1,3-Dichloropropene	mg/L	0.001	0.005	< 0.005
		trans-1,3-Dichloropropene	mg/L	0.001	0.005	< 0.005
	100-41-4	Ethylbenzene	mg/L	0.7	1.0	< 0.025
	591-78-6	2-Hexanone	mg/L			< 0.1
	108-10-1	4-Methyl-2-pentanone	mg/L			< 0.1
	75-09-2	Methylene chloride	mg/L	0.005	0.05	< 0.025
	1634-04-4	Methyl tert-butyl ether	mg/L	0.07	0.07	< 0.025
	100-42-5	Styrene	mg/L	0.1	0.5	< 0.025
	79-34-5	1,1,2,2-Tetrachloroethane	mg/L			< 0.025
	127-18-4	Tetrachloroethene	mg/L	0.005	0.025	< 0.025
	108-88-3	Toluene	mg/L	1.0	2.5	< 0.025
	71-55-6	1,1,1-Trichloroethane	mg/L	0.2	1.0	< 0.025
	79-00-5	1,1,2-Trichloroethane	mg/L	0.005	0.05	< 0.025
	79-01-6	Trichloroethene	mg/L	0.005	0.025	< 0.025
	75-01-4	Vinyl chloride	mg/L	0.002	0.01	0.15
	1330-20-7	Xylenes, Total	mg/L	10.0	10.0	< 0.075
PNA	83-32-9	Acenaphthene	mg/L	0.42	2.1	< 0.001
	208-96-8	Acenaphthylene	mg/L			< 0.001
	120-12-7	Anthracene	mg/L	2.1	10.5	< 0.001
	56-55-3	Benz(a)anthracene	mg/L	0.00013	0.00065	< 0.0001
	50-32-8	Benzo(a)pyrene	mg/L	0.0002	0.002	< 0.0001
	205-99-2	Benzo(b)fluoranthene	mg/L	0.00018	0.0009	< 0.0001
	191-24-2	Benzo(g,h,i)perylene	mg/L			< 0.001
	207-08-9	Benzo(k)fluoranthene	mg/L	0.00017	0.00085	< 0.0001
	218-01-9	Chrysene	mg/L	0.0015	0.0075	< 0.0001
	53-70-3	Dibenz(a,h)anthracene	mg/L	0.0003	0.0015	< 0.0001
	206-44-0	Fluoranthene	mg/L	0.28	1.4	< 0.001
	86-73-7	Fluorene	mg/L	0.28	1.4	< 0.001
	193-39-5	Indeno(1,2,3-cd)pyrene	mg/L	0.00043	0.00215	< 0.0001
	91-20-3	Naphthalene	mg/L	0.14	0.22	< 0.001
	85-01-8	Phenanthrene	mg/L			< 0.001
	129-00-0	Pyrene	mg/L	0.21	1.05	< 0.001
		-	C			

APPENDIX 4 LABORATORY DATA SHEETS

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

July 13, 2010

K-Plus Environmental, Inc. 15 Spinning Wheel Drive Suite 320

Hinsdale, IL 60521

Telephone: (312) 207-1600 Fax: (312) 831-2191

RE: 17094L1926, Defender Door, 1926 S. Laramie STAT Project No: 10070107

Dear Jessica Madsen:

STAT Analysis received 16 samples for the referenced project on 7/6/2010 11:30:00 AM. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAC standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

Catia Giannini

Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory.

Date: July 13, 2010

Client: K-Plus Environmental, Inc.

Project: 17094L1926, Defender Door, 1926 S. Laramie Work Order Sample Summary

Lab Order: 10070107

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
10070107-001A	KP1A		7/6/2010 8:10:00 AM	7/6/2010
10070107-001B	KP1A		7/6/2010 8:10:00 AM	7/6/2010
10070107-002A	KP1B		7/6/2010 8:10:00 AM	7/6/2010
10070107-003A	KP2A		7/6/2010 8:40:00 AM	7/6/2010
10070107-003B	KP2A		7/6/2010 8:40:00 AM	7/6/2010
10070107-004A	KP2B		7/6/2010 8:40:00 AM	7/6/2010
10070107-004B	KP2B		7/6/2010 8:40:00 AM	7/6/2010
10070107-005A	KP2TACO		7/6/2010 8:40:00 AM	7/6/2010
10070107-006A	KP3A		7/6/2010 9:00:00 AM	7/6/2010
10070107-006B	KP3A		7/6/2010 9:00:00 AM	7/6/2010
10070107-007A	KP3B		7/6/2010 9:00:00 AM	7/6/2010
10070107-007B	KP3B		7/6/2010 9:00:00 AM	7/6/2010
10070107-008A	KP4A		7/6/2010 9:20:00 AM	7/6/2010
10070107-008B	KP4A		7/6/2010 9:20:00 AM	7/6/2010
10070107-009A	KP4B		7/6/2010 9:20:00 AM	7/6/2010
10070107-009B	KP4B		7/6/2010 9:20:00 AM	7/6/2010
10070107-010A	KP5A		7/6/2010 9:45:00 AM	7/6/2010
10070107-010B	KP5A		7/6/2010 9:45:00 AM	7/6/2010
10070107-011A	KP5B		7/6/2010 9:45:00 AM	7/6/2010
10070107-011B	KP5B		7/6/2010 9:45:00 AM	7/6/2010
10070107-012A	KP6A		7/6/2010 10:15:00 AM	7/6/2010
10070107-012B	KP6A		7/6/2010 10:15:00 AM	7/6/2010
10070107-013A	KP6B		7/6/2010 10:15:00 AM	7/6/2010
10070107-013B	KP6B		7/6/2010 10:15:00 AM	7/6/2010
10070107-014A	KP7A		7/6/2010 10:30:00 AM	7/6/2010
10070107-014B	KP7A		7/6/2010 10:30:00 AM	7/6/2010
10070107-015A	KP7B		7/6/2010 10:30:00 AM	7/6/2010
10070107-015B	KP7B		7/6/2010 10:30:00 AM	7/6/2010
10070107-016A	KP1W		7/6/2010 11:00:00 AM	7/6/2010
10070107-016B	KP1W		7/6/2010 11:00:00 AM	7/6/2010

Date: July 13, 2010

CLIENT: K-Plus Environmental, Inc.

Project: 17094L1926, Defender Door, 1926 S. Laramie CASE NARRATIVE

Lab Order: 10070107

Geotech analysis of sample KP1B (10070107-002A) was conducted at the University of Illinois at Chicago, Department of Civil Engineering under the supervision of Dr. Krishna Reddy.

The VOC soil LCS/LCSD analyzed 02/01/10 had the following outside control limits:

Bromomethane: 68% (LCS) recovery (QC limits 70-130%)

Chloromethane: 62%/65% (LCS/LCSD) recovery (QC limits 70-130%)

This LCS/LCSD is associated with the following samples:

KP14 (10070107-001A)

KP2A (10070107-003A)

KP3A (10070107-006A)

KP3B (10070107-007A)

KP4A (10070107-008A)

KP4B (10070107-009A)

KP5A (10070107-010A)

The PNA soil MS/MSD prepared from sample KP1A (10070107-001) had recoveries outside control limits.

The metals MSD prepared from sample KP6B (10070107-013) had Chromium recovery outside control limits (125.3% (MSD) recovery, QC limits 75-125%). Recovery in the MS and RPD between the MS and MSD were within control limits.

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-001

Client Sample ID: KP1A

Collection Date: 7/6/2010 8:10:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Pr	ep Date: 7/7/2010	Analyst: VA
Mercury	ND	0.027	mg/Kg-c	Iry 1	7/7/2010
Metals by ICP/MS	SW6	020 (SW3	050B) Pr	ep Date: 7/8/2010	Analyst: JG
Arsenic	4.3	1	, mg/Kg-c	•	7/9/2010
Barium	39	1	mg/Kg-c	lry 10	7/9/2010
Cadmium	ND	0.52	mg/Kg-c	lry 10	7/9/2010
Chromium	12	1	mg/Kg-c	lry 10	7/9/2010
Lead	34	0.52	mg/Kg-c	lry 10	7/9/2010
Selenium	ND	1	mg/Kg-c	lry 10	7/9/2010
Silver	ND	1	mg/Kg-c	lry 10	7/9/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3550B) Pr	rep Date: 7/7/2010	Analyst: VS
Acenaphthene	ND	0.037	mg/Kg-c	•	7/12/2010
Acenaphthylene	ND	0.037	mg/Kg-c	Iry 10	7/12/2010
Anthracene	ND	0.037	mg/Kg-c	•	7/12/2010
Benz(a)anthracene	1.3	0.037	mg/Kg-c	-	7/12/2010
Benzo(a)pyrene	2.3	0.037	mg/Kg-c	•	7/12/2010
Benzo(b)fluoranthene	2.5	0.037	mg/Kg-c	•	7/12/2010
Benzo(g,h,i)perylene	2.8	0.037	mg/Kg-c	Iry 10	7/12/2010
Benzo(k)fluoranthene	1.7	0.037	mg/Kg-c	•	7/12/2010
Chrysene	1.7	0.037	mg/Kg-c	•	7/12/2010
Dibenz(a,h)anthracene	0.96	0.037	mg/Kg-c	Iry 10	7/12/2010
Fluoranthene	0.99	0.037	mg/Kg-c	Iry 10	7/12/2010
Fluorene	ND	0.037	mg/Kg-c	•	7/12/2010
Indeno(1,2,3-cd)pyrene	1.9	0.037	mg/Kg-c	Iry 10	7/12/2010
Naphthalene	0.041	0.037	mg/Kg-c	•	7/12/2010
Phenanthrene	0.18	0.037	mg/Kg-c	-	7/12/2010
Pyrene	1.1	0.037	mg/Kg-c	lry 10	7/12/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260E	B Pr	rep Date: 7/7/2010	Analyst: EJH
Acetone	ND	0.074	mg/Kg-c	Iry 1	7/9/2010
Benzene	0.0058	0.0049	mg/Kg-c	•	7/9/2010
Bromodichloromethane	ND	0.0049	mg/Kg-c	-	7/9/2010
Bromoform	ND	0.0049	mg/Kg-c	•	7/9/2010
Bromomethane	ND	0.0099	mg/Kg-c	•	7/9/2010
2-Butanone	ND	0.074	mg/Kg-c	•	7/9/2010
Carbon disulfide	ND	0.049	mg/Kg-c		7/9/2010
Carbon tetrachloride	ND	0.0049	mg/Kg-c		7/9/2010
Chlorobenzene	ND	0.0049	mg/Kg-c	Iry 1	7/9/2010
Chloroethane	ND	0.0099	mg/Kg-c	Iry 1	7/9/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

P. P.D. outside accepted recovery limits

R - RPD outside accepted recovery limits $% \left\{ 1,2,\ldots ,n\right\}$

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-001 **Client Sample ID:** KP1A

Collection Date: 7/6/2010 8:10:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: EJH
Chloroform	ND	0.0049	mg/Kg-dry	1	7/9/2010
Chloromethane	ND	0.0099	mg/Kg-dry	1	7/9/2010
Dibromochloromethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,1-Dichloroethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,2-Dichloroethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,1-Dichloroethene	ND	0.0049	mg/Kg-dry	1	7/9/2010
cis-1,2-Dichloroethene	ND	0.0049	mg/Kg-dry	1	7/9/2010
trans-1,2-Dichloroethene	0.0051	0.0049	mg/Kg-dry	1	7/9/2010
1,2-Dichloropropane	ND	0.0049	mg/Kg-dry	1	7/9/2010
cis-1,3-Dichloropropene	ND	0.002	mg/Kg-dry	1	7/9/2010
trans-1,3-Dichloropropene	ND	0.002	mg/Kg-dry	1	7/9/2010
Ethylbenzene	ND	0.0049	mg/Kg-dry	1	7/9/2010
2-Hexanone	ND	0.02	mg/Kg-dry	1	7/9/2010
4-Methyl-2-pentanone	ND	0.02	mg/Kg-dry	1	7/9/2010
Methylene chloride	ND	0.0099	mg/Kg-dry	1	7/9/2010
Methyl tert-butyl ether	ND	0.0049	mg/Kg-dry	1	7/9/2010
Styrene	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,1,2,2-Tetrachloroethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
Tetrachloroethene	ND	0.0049	mg/Kg-dry	1	7/9/2010
Toluene	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,1,1-Trichloroethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,1,2-Trichloroethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
Trichloroethene	0.0075	0.0049	mg/Kg-dry	1	7/9/2010
Vinyl chloride	ND	0.0049	mg/Kg-dry	1	7/9/2010
Xylenes, Total	ND	0.015	mg/Kg-dry	1	7/9/2010
Percent Moisture	D297	74	Prep	Date: 7/6/2010	Analyst: JP
Percent Moisture	11.7	0.2	* wt%	1	7/7/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-002

Client Sample ID: KP1B

Collection Date: 7/6/2010 8:10:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Dry Bulk Density	D2937			Prep	Date:	Analyst: SUB
Dry Bulk Density	111		*	lb/ft³	1	7/13/2010
Soil Particle Density	D854			Prep	Date:	Analyst: SUB
Soil Particle Density	164		*	lb/ft³	1	7/13/2010
Organic Carbon Content	D2974			Prep	Date:	Analyst: SUB
Fractional Organic Carbon	1.8	0.01	*	wt%	1	7/13/2010
Hydraulic Conductivity	D5084			Prep	Date:	Analyst: SUB
Hydraulic Conductivity	1.28 x10-8		*	cm/s	1	7/13/2010
Moisture Content	D2216			Prep	Date:	Analyst: SUB
Moisture Content	18.3	0.01	*	wt%	1	7/13/2010
Specific Gravity	D854			Prep	Date:	Analyst: SUB
Specific Gravity	2.62		*		1	7/13/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-003

Client Sample ID: KP2A

Collection Date: 7/6/2010 8:40:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Uni	ts DF	Date Analyzed
Mercury	SW7	471A	F	Prep Date: 7/7/2	2010 Analyst: VA
Mercury	ND	0.027	mg/Kg-	-dry 1	7/7/2010
Metals by ICP/MS	SW6	020 (SW3	050B) F	Prep Date: 7/8/2	2010 Analyst: JG
Arsenic	11	1.1	, mg/Kg-	•	7/9/2010
Barium	42	1.1	mg/Kg-	-dry 10	7/9/2010
Cadmium	ND	0.54	mg/Kg-	-dry 10	7/9/2010
Chromium	17	1.1	mg/Kg-	-dry 10	7/9/2010
Lead	22	0.54	mg/Kg-		7/9/2010
Selenium	ND	1.1	mg/Kg-	-dry 10	7/9/2010
Silver	ND	1.1	mg/Kg-	-dry 10	7/9/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3550B) F	Prep Date: 7/7/2	2010 Analyst: VS
Acenaphthene	ND	0.037	mg/Kg-	-dry 10	7/12/2010
Acenaphthylene	0.071	0.037	mg/Kg-	-dry 10	7/12/2010
Anthracene	0.35	0.037	mg/Kg-	-dry 10	7/12/2010
Benz(a)anthracene	1.3	0.037	mg/Kg-	-dry 10	7/12/2010
Benzo(a)pyrene	0.83	0.037	mg/Kg-	-dry 10	7/12/2010
Benzo(b)fluoranthene	1.2	0.037	mg/Kg-	-dry 10	7/12/2010
Benzo(g,h,i)perylene	0.83	0.037	mg/Kg-	-dry 10	7/12/2010
Benzo(k)fluoranthene	1.2	0.037	mg/Kg-	-dry 10	7/12/2010
Chrysene	1.3	0.037	mg/Kg-	-dry 10	7/12/2010
Dibenz(a,h)anthracene	0.33	0.037	mg/Kg-	-dry 10	7/12/2010
Fluoranthene	2.3	0.037	mg/Kg-	-dry 10	7/12/2010
Fluorene	0.12	0.037	mg/Kg-	-dry 10	7/12/2010
Indeno(1,2,3-cd)pyrene	0.73	0.037	mg/Kg-	-dry 10	7/12/2010
Naphthalene	ND	0.037	mg/Kg-	-dry 10	7/12/2010
Phenanthrene	1	0.037	mg/Kg-	-dry 10	7/12/2010
Pyrene	2	0.037	mg/Kg-	-dry 10	7/12/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260E	B F	Prep Date: 7/7/2	2010 Analyst: EJH
Acetone	ND	0.071	mg/Kg-	dry 1	7/9/2010
Benzene	ND	0.0047	mg/Kg-	-dry 1	7/9/2010
Bromodichloromethane	ND	0.0047	mg/Kg-	-dry 1	7/9/2010
Bromoform	ND	0.0047	mg/Kg-	-	7/9/2010
Bromomethane	ND	0.0094	mg/Kg-	-dry 1	7/9/2010
2-Butanone	ND	0.071	mg/Kg-	•	7/9/2010
Carbon disulfide	ND	0.047	mg/Kg-	-	7/9/2010
Carbon tetrachloride	ND	0.0047	mg/Kg-		7/9/2010
Chlorobenzene	ND	0.0047	mg/Kg-	-dry 1	7/9/2010
Chloroethane	ND	0.0094	mg/Kg-	-dry 1	7/9/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

 \boldsymbol{B} - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

5 - Spike Recovery outside accepted recovery film

R - RPD outside accepted recovery limits

 \boldsymbol{E} - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-003

Client Sample ID: KP2A

Collection Date: 7/6/2010 8:40:00 AM

Matrix: Soil

Analyses	Result	RL Qı	ıalifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: EJH
Chloroform	ND	0.0047	mg/Kg-dry	1	7/9/2010
Chloromethane	ND	0.0094	mg/Kg-dry	1	7/9/2010
Dibromochloromethane	ND	0.0047	mg/Kg-dry	1	7/9/2010
1,1-Dichloroethane	ND	0.0047	mg/Kg-dry	1	7/9/2010
1,2-Dichloroethane	ND	0.0047	mg/Kg-dry	1	7/9/2010
1,1-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/9/2010
cis-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/9/2010
trans-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/9/2010
1,2-Dichloropropane	ND	0.0047	mg/Kg-dry	1	7/9/2010
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/9/2010
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/9/2010
Ethylbenzene	ND	0.0047	mg/Kg-dry	1	7/9/2010
2-Hexanone	ND	0.019	mg/Kg-dry	1	7/9/2010
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	7/9/2010
Methylene chloride	ND	0.0094	mg/Kg-dry	1	7/9/2010
Methyl tert-butyl ether	ND	0.0047	mg/Kg-dry	1	7/9/2010
Styrene	ND	0.0047	mg/Kg-dry	1	7/9/2010
1,1,2,2-Tetrachloroethane	ND	0.0047	mg/Kg-dry	1	7/9/2010
Tetrachloroethene	ND	0.0047	mg/Kg-dry	1	7/9/2010
Toluene	ND	0.0047	mg/Kg-dry	1	7/9/2010
1,1,1-Trichloroethane	ND	0.0047	mg/Kg-dry	1	7/9/2010
1,1,2-Trichloroethane	ND	0.0047	mg/Kg-dry	1	7/9/2010
Trichloroethene	ND	0.0047	mg/Kg-dry	1	7/9/2010
Vinyl chloride	ND	0.0047	mg/Kg-dry	1	7/9/2010
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/9/2010
Percent Moisture	D297	74	Prep	Date: 7/6/2010	Analyst: JP
Percent Moisture	11.6	0.2	* wt%	1	7/7/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-004

Client Sample ID: KP2B

Collection Date: 7/6/2010 8:40:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 7/7/2010	Analyst: VA
Mercury	ND	0.027	mg/Kg-dry	1	7/7/2010
Metals by ICP/MS	SW6	020 (SW3	050B) Prep	Date: 7/8/2010	Analyst: JG
Arsenic	5.3	1	mg/Kg-dry	10	7/9/2010
Barium	29	1	mg/Kg-dry	10	7/9/2010
Cadmium	ND	0.52	mg/Kg-dry	10	7/9/2010
Chromium	17	1	mg/Kg-dry	10	7/9/2010
Lead	12	0.52	mg/Kg-dry	10	7/9/2010
Selenium	ND	1	mg/Kg-dry	10	7/9/2010
Silver	ND	1	mg/Kg-dry	10	7/9/2010
Polynuclear Aromatic Hydrocarbons	SW82	270C-SIM	(SW3550B) Prep	Date: 7/7/2010	Analyst: VS
Acenaphthene	ND	0.028	mg/Kg-dry	1	7/12/2010
Acenaphthylene	ND	0.028	mg/Kg-dry	1	7/12/2010
Anthracene	ND	0.028	mg/Kg-dry	1	7/12/2010
Benz(a)anthracene	ND	0.028	mg/Kg-dry	1	7/12/2010
Benzo(a)pyrene	ND	0.028	mg/Kg-dry	1	7/12/2010
Benzo(b)fluoranthene	ND	0.028	mg/Kg-dry	1	7/12/2010
Benzo(g,h,i)perylene	ND	0.028	mg/Kg-dry	1	7/12/2010
Benzo(k)fluoranthene	ND	0.028	mg/Kg-dry	1	7/12/2010
Chrysene	ND	0.028	mg/Kg-dry	1	7/12/2010
Dibenz(a,h)anthracene	ND	0.028	mg/Kg-dry	1	7/12/2010
Fluoranthene	ND	0.028	mg/Kg-dry	1	7/12/2010
Fluorene	ND	0.028	mg/Kg-dry	1	7/12/2010
Indeno(1,2,3-cd)pyrene	ND	0.028	mg/Kg-dry	1	7/12/2010
Naphthalene	ND	0.028	mg/Kg-dry	1	7/12/2010
Phenanthrene	ND	0.028	mg/Kg-dry	1	7/12/2010
Pyrene	ND	0.028	mg/Kg-dry	1	7/12/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: EJH
Acetone	ND	0.067	mg/Kg-dry	1	7/9/2010
Benzene	ND	0.0045	mg/Kg-dry	1	7/9/2010
Bromodichloromethane	ND	0.0045	mg/Kg-dry	1	7/9/2010
Bromoform	ND	0.0045	mg/Kg-dry	1	7/9/2010
Bromomethane	ND	0.009	mg/Kg-dry	1	7/9/2010
2-Butanone	ND	0.067	mg/Kg-dry	1	7/9/2010
Carbon disulfide	ND	0.045	mg/Kg-dry	1	7/9/2010
Carbon tetrachloride	ND	0.0045	mg/Kg-dry	1	7/9/2010
Chlorobenzene	ND	0.0045	mg/Kg-dry	1	7/9/2010
Chloroethane	ND	0.009	mg/Kg-dry	1	7/9/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

5 - Spike Recovery outside accepted recovery ini

R - RPD outside accepted recovery limits $% \left\{ 1,2,\ldots ,n\right\}$

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-004

Client Sample ID: KP2B

Collection Date: 7/6/2010 8:40:00 AM

Matrix: Soil

Analyses	Result	RL Qu	alifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: EJH
Chloroform	ND	0.0045	mg/Kg-dry	1	7/9/2010
Chloromethane	ND	0.009	mg/Kg-dry	1	7/9/2010
Dibromochloromethane	ND	0.0045	mg/Kg-dry	1	7/9/2010
1,1-Dichloroethane	ND	0.0045	mg/Kg-dry	1	7/9/2010
1,2-Dichloroethane	ND	0.0045	mg/Kg-dry	1	7/9/2010
1,1-Dichloroethene	ND	0.0045	mg/Kg-dry	1	7/9/2010
cis-1,2-Dichloroethene	ND	0.0045	mg/Kg-dry	1	7/9/2010
trans-1,2-Dichloroethene	ND	0.0045	mg/Kg-dry	1	7/9/2010
1,2-Dichloropropane	ND	0.0045	mg/Kg-dry	1	7/9/2010
cis-1,3-Dichloropropene	ND	0.0018	mg/Kg-dry	1	7/9/2010
trans-1,3-Dichloropropene	ND	0.0018	mg/Kg-dry	1	7/9/2010
Ethylbenzene	ND	0.0045	mg/Kg-dry	1	7/9/2010
2-Hexanone	ND	0.018	mg/Kg-dry	1	7/9/2010
4-Methyl-2-pentanone	ND	0.018	mg/Kg-dry	1	7/9/2010
Methylene chloride	ND	0.009	mg/Kg-dry	1	7/9/2010
Methyl tert-butyl ether	ND	0.0045	mg/Kg-dry	1	7/9/2010
Styrene	ND	0.0045	mg/Kg-dry	1	7/9/2010
1,1,2,2-Tetrachloroethane	ND	0.0045	mg/Kg-dry	1	7/9/2010
Tetrachloroethene	ND	0.0045	mg/Kg-dry	1	7/9/2010
Toluene	ND	0.0045	mg/Kg-dry	1	7/9/2010
1,1,1-Trichloroethane	ND	0.0045	mg/Kg-dry	1	7/9/2010
1,1,2-Trichloroethane	ND	0.0045	mg/Kg-dry	1	7/9/2010
Trichloroethene	ND	0.0045	mg/Kg-dry	1	7/9/2010
Vinyl chloride	0.0056	0.0045	mg/Kg-dry	1	7/9/2010
Xylenes, Total	ND	0.013	mg/Kg-dry	1	7/9/2010
Percent Moisture	D297	74	Prep	Date: 7/6/2010	Analyst: JP
Percent Moisture	10.3	0.2	* wt%	1	7/7/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

D. DDD outside accepted recovery limits

R - RPD outside accepted recovery limits $% \left\{ 1,2,\ldots ,n\right\}$

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-005

Client Sample ID: KP2TACO

Collection Date: 7/6/2010 8:40:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
TCLP Mercury	SW1	311/7470	4	Prep	Date: 7/7/2010	Analyst: VA
Mercury	ND	0.0002		mg/L	1	7/7/2010
TCLP Metals by ICP/MS	SW1	311/6020	(SW3005A)	Prep	Date: 7/7/2010	Analyst: JG
Arsenic	ND	0.01		mg/L	5	7/7/2010
Barium	0.17	0.05		mg/L	5	7/7/2010
Cadmium	ND	0.005		mg/L	5	7/7/2010
Chromium	ND	0.01		mg/L	5	7/7/2010
Lead	0.026	0.005		mg/L	5	7/7/2010
Selenium	ND	0.01		mg/L	5	7/7/2010
Silver	ND	0.01		mg/L	5	7/7/2010
Cyanide, Reactive	SW7	.3.3.2		Prep	Date: 7/12/2010	Analyst: YZ
Reactive Cyanide	ND	1		mg/Kg	1	7/12/2010
pH (25 °C)	SW9	045C		Prep	Date: 7/6/2010	Analyst: RW
pH	7.8		ŗ	oH Units	1	7/6/2010
Percent Moisture	D297	' 4		Prep	Date: 7/7/2010	Analyst: JP
Percent Moisture	18.7	0.2	*	wt%	1	7/8/2010
Sulfide, Reactive	SW7	.3.4.2		Prep	Date: 7/8/2010	Analyst: YZ
Reactive Sulfide	ND	10		mg/Kg	1	7/8/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-006

Client Sample ID: KP3A

Collection Date: 7/6/2010 9:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 7/7/2010	Analyst: VA
Mercury	ND	0.031	mg/Kg-dry	1	7/7/2010
Metals by ICP/MS	SW6	020 (SW3	050B) Pres	Date: 7/8/2010	Analyst: JG
Arsenic	13	1.2	mg/Kg-dry		7/9/2010
Barium	130	1.2	mg/Kg-dry		7/9/2010
Cadmium	ND	0.6	mg/Kg-dry	10	7/9/2010
Chromium	30	1.2	mg/Kg-dry	10	7/9/2010
Lead	24	0.6	mg/Kg-dry		7/9/2010
Selenium	ND	1.2	mg/Kg-dry		7/9/2010
Silver	ND	1.2	mg/Kg-dry	10	7/9/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3550B) Prep	Date: 7/7/2010	Analyst: VS
Acenaphthene	0.04	0.032	mg/Kg-dry	1	7/12/2010
Acenaphthylene	ND	0.032	mg/Kg-dry	1	7/12/2010
Anthracene	ND	0.032	mg/Kg-dry	1	7/12/2010
Benz(a)anthracene	ND	0.032	mg/Kg-dry	1	7/12/2010
Benzo(a)pyrene	ND	0.032	mg/Kg-dry	1	7/12/2010
Benzo(b)fluoranthene	ND	0.032	mg/Kg-dry	1	7/12/2010
Benzo(g,h,i)perylene	ND	0.032	mg/Kg-dry	1	7/12/2010
Benzo(k)fluoranthene	ND	0.032	mg/Kg-dry	1	7/12/2010
Chrysene	0.05	0.032	mg/Kg-dry	1	7/12/2010
Dibenz(a,h)anthracene	ND	0.032	mg/Kg-dry	1	7/12/2010
Fluoranthene	ND	0.032	mg/Kg-dry	1	7/12/2010
Fluorene	0.04	0.032	mg/Kg-dry	1	7/12/2010
Indeno(1,2,3-cd)pyrene	ND	0.032	mg/Kg-dry	1	7/12/2010
Naphthalene	ND	0.032	mg/Kg-dry	1	7/12/2010
Phenanthrene	0.032	0.032	mg/Kg-dry	1	7/12/2010
Pyrene	0.04	0.032	mg/Kg-dry	1	7/12/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: EJH
Acetone	ND	0.076	mg/Kg-dry	1	7/9/2010
Benzene	ND	0.0051	mg/Kg-dry	1	7/9/2010
Bromodichloromethane	ND	0.0051	mg/Kg-dry	1	7/9/2010
Bromoform	ND	0.0051	mg/Kg-dry	1	7/9/2010
Bromomethane	ND	0.01	mg/Kg-dry		7/9/2010
2-Butanone	ND	0.076	mg/Kg-dry	1	7/9/2010
Carbon disulfide	ND	0.051	mg/Kg-dry	1	7/9/2010
Carbon tetrachloride	ND	0.0051	mg/Kg-dry	1	7/9/2010
Chlorobenzene	ND	0.0051	mg/Kg-dry	1	7/9/2010
Chloroethane	ND	0.01	mg/Kg-dry	1	7/9/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

D. DDD outside accomted accovery limits

R - RPD outside accepted recovery limits $% \left\{ 1,2,\ldots ,n\right\}$

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

10070107-006 Lab ID:

Client Sample ID: KP3A

Collection Date: 7/6/2010 9:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: EJH
Chloroform	ND	0.0051	mg/Kg-dry	1	7/9/2010
Chloromethane	ND	0.01	mg/Kg-dry	1	7/9/2010
Dibromochloromethane	ND	0.0051	mg/Kg-dry	1	7/9/2010
1,1-Dichloroethane	ND	0.0051	mg/Kg-dry	1	7/9/2010
1,2-Dichloroethane	ND	0.0051	mg/Kg-dry	1	7/9/2010
1,1-Dichloroethene	ND	0.0051	mg/Kg-dry	1	7/9/2010
cis-1,2-Dichloroethene	ND	0.0051	mg/Kg-dry	1	7/9/2010
trans-1,2-Dichloroethene	ND	0.0051	mg/Kg-dry	1	7/9/2010
1,2-Dichloropropane	ND	0.0051	mg/Kg-dry	1	7/9/2010
cis-1,3-Dichloropropene	ND	0.002	mg/Kg-dry	1	7/9/2010
trans-1,3-Dichloropropene	ND	0.002	mg/Kg-dry	1	7/9/2010
Ethylbenzene	ND	0.0051	mg/Kg-dry	1	7/9/2010
2-Hexanone	ND	0.02	mg/Kg-dry	1	7/9/2010
4-Methyl-2-pentanone	ND	0.02	mg/Kg-dry	1	7/9/2010
Methylene chloride	ND	0.01	mg/Kg-dry	1	7/9/2010
Methyl tert-butyl ether	ND	0.0051	mg/Kg-dry	1	7/9/2010
Styrene	ND	0.0051	mg/Kg-dry	1	7/9/2010
1,1,2,2-Tetrachloroethane	ND	0.0051	mg/Kg-dry	1	7/9/2010
Tetrachloroethene	ND	0.0051	mg/Kg-dry	1	7/9/2010
Toluene	ND	0.0051	mg/Kg-dry	1	7/9/2010
1,1,1-Trichloroethane	ND	0.0051	mg/Kg-dry	1	7/9/2010
1,1,2-Trichloroethane	ND	0.0051	mg/Kg-dry	1	7/9/2010
Trichloroethene	ND	0.0051	mg/Kg-dry	1	7/9/2010
Vinyl chloride	ND	0.0051	mg/Kg-dry	1	7/9/2010
Xylenes, Total	ND	0.015	mg/Kg-dry	1	7/9/2010
Percent Moisture	D297	74	Prep	Date: 7/6/2010	Analyst: JP
Percent Moisture	22.9	0.2	* wt%	1	7/7/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-007

Client Sample ID: KP3B

Collection Date: 7/6/2010 9:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Mercury	SW7	471A		Prep	Date: 7/7/2010	Analyst: VA
Mercury	ND	0.029	m	ng/Kg-dry	1	7/7/2010
Metals by ICP/MS	SW6	020 (SW3	050B)	Prep	Date: 7/8/2010	Analyst: JG
Arsenic	18	1.2		ig/Kg-dry	10	7/9/2010
Barium	51	1.2		ig/Kg-dry	10	7/9/2010
Cadmium	ND	0.58		ig/Kg-dry	10	7/9/2010
Chromium	20	1.2		ig/Kg-dry	10	7/9/2010
Lead	21	0.58		ig/Kg-dry	10	7/9/2010
Selenium	ND	1.2	m	ig/Kg-dry	10	7/9/2010
Silver	ND	1.2	m	ig/Kg-dry	10	7/9/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3550B)	Prep	Date: 7/7/2010	Analyst: VS
Acenaphthene	ND	0.031	m	ig/Kg-dry	1	7/12/2010
Acenaphthylene	ND	0.031	m	g/Kg-dry	1	7/12/2010
Anthracene	ND	0.031		ıg/Kg-dry	1	7/12/2010
Benz(a)anthracene	ND	0.031	m	ıg/Kg-dry	1	7/12/2010
Benzo(a)pyrene	ND	0.031	m	ıg/Kg-dry	1	7/12/2010
Benzo(b)fluoranthene	ND	0.031	m	ıg/Kg-dry	1	7/12/2010
Benzo(g,h,i)perylene	ND	0.031	m	ıg/Kg-dry	1	7/12/2010
Benzo(k)fluoranthene	ND	0.031	m	ıg/Kg-dry	1	7/12/2010
Chrysene	ND	0.031	m	ıg/Kg-dry	1	7/12/2010
Dibenz(a,h)anthracene	ND	0.031	m	ıg/Kg-dry	1	7/12/2010
Fluoranthene	ND	0.031	m	ıg/Kg-dry	1	7/12/2010
Fluorene	ND	0.031	m	ıg/Kg-dry	1	7/12/2010
Indeno(1,2,3-cd)pyrene	ND	0.031	m	g/Kg-dry	1	7/12/2010
Naphthalene	ND	0.031	m	g/Kg-dry	1	7/12/2010
Phenanthrene	ND	0.031	m	g/Kg-dry	1	7/12/2010
Pyrene	ND	0.031	m	ng/Kg-dry	1	7/12/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260E	3	Prep	Date: 7/7/2010	Analyst: EJH
Acetone	ND	0.07	m	ıg/Kg-dry	1	7/9/2010
Benzene	ND	0.0047	m	ıg/Kg-dry	1	7/9/2010
Bromodichloromethane	ND	0.0047	m	g/Kg-dry	1	7/9/2010
Bromoform	ND	0.0047	m	g/Kg-dry	1	7/9/2010
Bromomethane	ND	0.0094	m	ig/Kg-dry	1	7/9/2010
2-Butanone	ND	0.07		ig/Kg-dry	1	7/9/2010
Carbon disulfide	ND	0.047		ig/Kg-dry	1	7/9/2010
Carbon tetrachloride	ND	0.0047	m	g/Kg-dry	1	7/9/2010
Chlorobenzene	ND	0.0047	m	ig/Kg-dry	1	7/9/2010
Chloroethane	ND	0.0094		ig/Kg-dry	1	7/9/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

 \boldsymbol{B} - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

s - Spike Recovery outside accepted recovery fini

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-007 Client Sample ID: KP3B

Collection Date: 7/6/2010 9:00:00 AM

Matrix: Soil

Analyses	Result	RL Qu	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: EJH
Chloroform	ND	0.0047	mg/Kg-dry	1	7/9/2010
Chloromethane	ND	0.0094	mg/Kg-dry	1	7/9/2010
Dibromochloromethane	ND	0.0047	mg/Kg-dry	1	7/9/2010
1,1-Dichloroethane	ND	0.0047	mg/Kg-dry	1	7/9/2010
1,2-Dichloroethane	ND	0.0047	mg/Kg-dry	1	7/9/2010
1,1-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/9/2010
cis-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/9/2010
trans-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/9/2010
1,2-Dichloropropane	ND	0.0047	mg/Kg-dry	1	7/9/2010
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/9/2010
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/9/2010
Ethylbenzene	ND	0.0047	mg/Kg-dry	1	7/9/2010
2-Hexanone	ND	0.019	mg/Kg-dry	1	7/9/2010
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	7/9/2010
Methylene chloride	ND	0.0094	mg/Kg-dry	1	7/9/2010
Methyl tert-butyl ether	ND	0.0047	mg/Kg-dry	1	7/9/2010
Styrene	ND	0.0047	mg/Kg-dry	1	7/9/2010
1,1,2,2-Tetrachloroethane	ND	0.0047	mg/Kg-dry	1	7/9/2010
Tetrachloroethene	ND	0.0047	mg/Kg-dry	1	7/9/2010
Toluene	ND	0.0047	mg/Kg-dry	1	7/9/2010
1,1,1-Trichloroethane	ND	0.0047	mg/Kg-dry	1	7/9/2010
1,1,2-Trichloroethane	ND	0.0047	mg/Kg-dry	1	7/9/2010
Trichloroethene	ND	0.0047	mg/Kg-dry	1	7/9/2010
Vinyl chloride	ND	0.0047	mg/Kg-dry	1	7/9/2010
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/9/2010
Percent Moisture	D297	' 4	Prep	Date: 7/6/2010	Analyst: JP
Percent Moisture	18.6	0.2	* wt%	1	7/7/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-008

Client Sample ID: KP4A

Collection Date: 7/6/2010 9:20:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Pre	p Date: 7/7/2010	Analyst: VA
Mercury	ND	0.029	mg/Kg-dry	1	7/7/2010
Metals by ICP/MS	SW6	020 (SW3	050B) Pre	p Date: 7/8/2010	Analyst: JG
Arsenic	8.3	1.2	mg/Kg-dry	•	7/9/2010
Barium	80	1.2	mg/Kg-dry	10	7/9/2010
Cadmium	ND	0.61	mg/Kg-dry	10	7/9/2010
Chromium	27	1.2	mg/Kg-dry	10	7/9/2010
Lead	21	0.61	mg/Kg-dry	10	7/9/2010
Selenium	ND	1.2	mg/Kg-dry	10	7/9/2010
Silver	ND	1.2	mg/Kg-dry	10	7/9/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3550B) Pre	p Date: 7/7/2010	Analyst: VS
Acenaphthene	ND	0.031	mg/Kg-dry	!	7/12/2010
Acenaphthylene	ND	0.031	mg/Kg-dry	1	7/12/2010
Anthracene	ND	0.031	mg/Kg-dry		7/12/2010
Benz(a)anthracene	ND	0.031	mg/Kg-dry		7/12/2010
Benzo(a)pyrene	ND	0.031	mg/Kg-dry		7/12/2010
Benzo(b)fluoranthene	ND	0.031	mg/Kg-dry		7/12/2010
Benzo(g,h,i)perylene	ND	0.031	mg/Kg-dry	1	7/12/2010
Benzo(k)fluoranthene	ND	0.031	mg/Kg-dry		7/12/2010
Chrysene	ND	0.031	mg/Kg-dry		7/12/2010
Dibenz(a,h)anthracene	ND	0.031	mg/Kg-dry	1	7/12/2010
Fluoranthene	ND	0.031	mg/Kg-dry	1	7/12/2010
Fluorene	ND	0.031	mg/Kg-dry		7/12/2010
Indeno(1,2,3-cd)pyrene	ND	0.031	mg/Kg-dry	1	7/12/2010
Naphthalene	ND	0.031	mg/Kg-dry		7/12/2010
Phenanthrene	ND	0.031	mg/Kg-dry		7/12/2010
Pyrene	ND	0.031	mg/Kg-dry		7/12/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260E	B Pre	p Date: 7/7/2010	Analyst: EJH
Acetone	ND	0.067	mg/Kg-dry	1	7/9/2010
Benzene	ND	0.0045	mg/Kg-dry		7/9/2010
Bromodichloromethane	ND	0.0045	mg/Kg-dry		7/9/2010
Bromoform	ND	0.0045	mg/Kg-dry		7/9/2010
Bromomethane	ND	0.0089	mg/Kg-dry		7/9/2010
2-Butanone	ND	0.067	mg/Kg-dry		7/9/2010
Carbon disulfide	ND	0.045	mg/Kg-dry		7/9/2010
Carbon tetrachloride	ND	0.0045	mg/Kg-dry		7/9/2010
Chlorobenzene	ND	0.0045	mg/Kg-dry		7/9/2010
Chloroethane	ND	0.0089	mg/Kg-dry		7/9/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

D. DDD outside accounted accordant limits

R - RPD outside accepted recovery limits $% \left\{ 1,2,\ldots ,n\right\}$

 \boldsymbol{E} - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-008

Client Sample ID: KP4A

Collection Date: 7/6/2010 9:20:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: EJH
Chloroform	ND	0.0045	mg/Kg-dry	1	7/9/2010
Chloromethane	ND	0.0089	mg/Kg-dry	1	7/9/2010
Dibromochloromethane	ND	0.0045	mg/Kg-dry	1	7/9/2010
1,1-Dichloroethane	ND	0.0045	mg/Kg-dry	1	7/9/2010
1,2-Dichloroethane	ND	0.0045	mg/Kg-dry	1	7/9/2010
1,1-Dichloroethene	ND	0.0045	mg/Kg-dry	1	7/9/2010
cis-1,2-Dichloroethene	ND	0.0045	mg/Kg-dry	1	7/9/2010
trans-1,2-Dichloroethene	ND	0.0045	mg/Kg-dry	1	7/9/2010
1,2-Dichloropropane	ND	0.0045	mg/Kg-dry	1	7/9/2010
cis-1,3-Dichloropropene	ND	0.0018	mg/Kg-dry	1	7/9/2010
trans-1,3-Dichloropropene	ND	0.0018	mg/Kg-dry	1	7/9/2010
Ethylbenzene	ND	0.0045	mg/Kg-dry	1	7/9/2010
2-Hexanone	ND	0.018	mg/Kg-dry	1	7/9/2010
4-Methyl-2-pentanone	ND	0.018	mg/Kg-dry	1	7/9/2010
Methylene chloride	ND	0.0089	mg/Kg-dry	1	7/9/2010
Methyl tert-butyl ether	ND	0.0045	mg/Kg-dry	1	7/9/2010
Styrene	ND	0.0045	mg/Kg-dry	1	7/9/2010
1,1,2,2-Tetrachloroethane	ND	0.0045	mg/Kg-dry	1	7/9/2010
Tetrachloroethene	ND	0.0045	mg/Kg-dry	1	7/9/2010
Toluene	ND	0.0045	mg/Kg-dry	1	7/9/2010
1,1,1-Trichloroethane	ND	0.0045	mg/Kg-dry	1	7/9/2010
1,1,2-Trichloroethane	ND	0.0045	mg/Kg-dry	1	7/9/2010
Trichloroethene	ND	0.0045	mg/Kg-dry	1	7/9/2010
Vinyl chloride	ND	0.0045	mg/Kg-dry	1	7/9/2010
Xylenes, Total	ND	0.013	mg/Kg-dry	1	7/9/2010
Percent Moisture	D297	' 4	Prep	Date: 7/6/2010	Analyst: JP
Percent Moisture	19.3	0.2	* wt%	1	7/7/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-009

Client Sample ID: KP4B

Collection Date: 7/6/2010 9:20:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 7/7/2010	Analyst: VA
Mercury	ND	0.03	mg/Kg-dry	1	7/7/2010
Metals by ICP/MS	SW6	020 (SW3	050B) Prep	Date: 7/8/2010	Analyst: JG
Arsenic	7.7	1.1	mg/Kg-dry	10	7/9/2010
Barium	38	1.1	mg/Kg-dry	10	7/9/2010
Cadmium	ND	0.56	mg/Kg-dry	10	7/9/2010
Chromium	22	1.1	mg/Kg-dry	10	7/9/2010
Lead	14	0.56	mg/Kg-dry	10	7/9/2010
Selenium	ND	1.1	mg/Kg-dry	10	7/9/2010
Silver	ND	1.1	mg/Kg-dry	10	7/9/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3550B) Prep	Date: 7/7/2010	Analyst: VS
Acenaphthene	ND	0.03	mg/Kg-dry	1	7/12/2010
Acenaphthylene	ND	0.03	mg/Kg-dry	1	7/12/2010
Anthracene	ND	0.03	mg/Kg-dry	1	7/12/2010
Benz(a)anthracene	ND	0.03	mg/Kg-dry	1	7/12/2010
Benzo(a)pyrene	ND	0.03	mg/Kg-dry	1	7/12/2010
Benzo(b)fluoranthene	ND	0.03	mg/Kg-dry	1	7/12/2010
Benzo(g,h,i)perylene	ND	0.03	mg/Kg-dry	1	7/12/2010
Benzo(k)fluoranthene	ND	0.03	mg/Kg-dry	1	7/12/2010
Chrysene	ND	0.03	mg/Kg-dry	1	7/12/2010
Dibenz(a,h)anthracene	ND	0.03	mg/Kg-dry	1	7/12/2010
Fluoranthene	ND	0.03	mg/Kg-dry	1	7/12/2010
Fluorene	ND	0.03	mg/Kg-dry	1	7/12/2010
Indeno(1,2,3-cd)pyrene	ND	0.03	mg/Kg-dry	1	7/12/2010
Naphthalene	ND	0.03	mg/Kg-dry	1	7/12/2010
Phenanthrene	ND	0.03	mg/Kg-dry	1	7/12/2010
Pyrene	ND	0.03	mg/Kg-dry	1	7/12/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: EJH
Acetone	ND	0.073	mg/Kg-dry	1	7/9/2010
Benzene	ND	0.0049	mg/Kg-dry	1	7/9/2010
Bromodichloromethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
Bromoform	ND	0.0049	mg/Kg-dry	1	7/9/2010
Bromomethane	ND	0.0098	mg/Kg-dry	1	7/9/2010
2-Butanone	ND	0.073	mg/Kg-dry	1	7/9/2010
Carbon disulfide	ND	0.049	mg/Kg-dry	1	7/9/2010
Carbon tetrachloride	ND	0.0049	mg/Kg-dry	1	7/9/2010
Chlorobenzene	ND	0.0049	mg/Kg-dry	1	7/9/2010
Chloroethane	ND	0.0098	mg/Kg-dry	1	7/9/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

D. DDD outside accounted accovery limits

R - RPD outside accepted recovery limits $% \left\{ 1,2,\ldots ,n\right\}$

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-009

Client Sample ID: KP4B

Collection Date: 7/6/2010 9:20:00 AM

Matrix: Soil

Analyses	Result	RL Qu	alifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: EJH
Chloroform	ND	0.0049	mg/Kg-dry	1	7/9/2010
Chloromethane	ND	0.0098	mg/Kg-dry	1	7/9/2010
Dibromochloromethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,1-Dichloroethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,2-Dichloroethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,1-Dichloroethene	ND	0.0049	mg/Kg-dry	1	7/9/2010
cis-1,2-Dichloroethene	ND	0.0049	mg/Kg-dry	1	7/9/2010
trans-1,2-Dichloroethene	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,2-Dichloropropane	ND	0.0049	mg/Kg-dry	1	7/9/2010
cis-1,3-Dichloropropene	ND	0.002	mg/Kg-dry	1	7/9/2010
trans-1,3-Dichloropropene	ND	0.002	mg/Kg-dry	1	7/9/2010
Ethylbenzene	ND	0.0049	mg/Kg-dry	1	7/9/2010
2-Hexanone	ND	0.02	mg/Kg-dry	1	7/9/2010
4-Methyl-2-pentanone	ND	0.02	mg/Kg-dry	1	7/9/2010
Methylene chloride	ND	0.0098	mg/Kg-dry	1	7/9/2010
Methyl tert-butyl ether	ND	0.0049	mg/Kg-dry	1	7/9/2010
Styrene	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,1,2,2-Tetrachloroethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
Tetrachloroethene	ND	0.0049	mg/Kg-dry	1	7/9/2010
Toluene	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,1,1-Trichloroethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,1,2-Trichloroethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
Trichloroethene	ND	0.0049	mg/Kg-dry	1	7/9/2010
Vinyl chloride	ND	0.0049	mg/Kg-dry	1	7/9/2010
Xylenes, Total	ND	0.015	mg/Kg-dry	1	7/9/2010
Percent Moisture	D297	74	Prep	Date: 7/6/2010	Analyst: JP
Percent Moisture	17.9	0.2	* wt%	1	7/7/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

ir - Holding time exc

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-010

Client Sample ID: KP5A

Collection Date: 7/6/2010 9:45:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Pre	ep Date: 7/7/2010	Analyst: VA
Mercury	ND	0.03	mg/Kg-dr	y 1	7/7/2010
Metals by ICP/MS	SW6	020 (SW3	050B) Pre	ep Date: 7/8/2010	Analyst: JG
Arsenic	8.1	1.2	mg/Kg-dr	•	7/9/2010
Barium	54	1.2	mg/Kg-dr	y 10	7/9/2010
Cadmium	ND	0.59	mg/Kg-dr	y 10	7/9/2010
Chromium	30	1.2	mg/Kg-dr	y 10	7/9/2010
Lead	16	0.59	mg/Kg-dr		7/9/2010
Selenium	ND	1.2	mg/Kg-dr	y 10	7/9/2010
Silver	ND	1.2	mg/Kg-dr	y 10	7/9/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3550B) Pre	ep Date: 7/7/2010	Analyst: VS
Acenaphthene	ND	0.031	mg/Kg-dr	y 1	7/12/2010
Acenaphthylene	ND	0.031	mg/Kg-dr	y 1	7/12/2010
Anthracene	ND	0.031	mg/Kg-dr	y 1	7/12/2010
Benz(a)anthracene	ND	0.031	mg/Kg-dr	y 1	7/12/2010
Benzo(a)pyrene	ND	0.031	mg/Kg-dr	y 1	7/12/2010
Benzo(b)fluoranthene	ND	0.031	mg/Kg-dr	y 1	7/12/2010
Benzo(g,h,i)perylene	ND	0.031	mg/Kg-dr	y 1	7/12/2010
Benzo(k)fluoranthene	ND	0.031	mg/Kg-dr	y 1	7/12/2010
Chrysene	ND	0.031	mg/Kg-dr	y 1	7/12/2010
Dibenz(a,h)anthracene	ND	0.031	mg/Kg-dr	y 1	7/12/2010
Fluoranthene	ND	0.031	mg/Kg-dr	y 1	7/12/2010
Fluorene	ND	0.031	mg/Kg-dr	y 1	7/12/2010
Indeno(1,2,3-cd)pyrene	ND	0.031	mg/Kg-dr	y 1	7/12/2010
Naphthalene	ND	0.031	mg/Kg-dr	y 1	7/12/2010
Phenanthrene	ND	0.031	mg/Kg-dr	y 1	7/12/2010
Pyrene	ND	0.031	mg/Kg-dr	y 1	7/12/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Pre	p Date: 7/7/2010	Analyst: EJH
Acetone	ND	0.074	mg/Kg-dr	y 1	7/9/2010
Benzene	ND	0.0049	mg/Kg-dr	y 1	7/9/2010
Bromodichloromethane	ND	0.0049	mg/Kg-dr	y 1	7/9/2010
Bromoform	ND	0.0049	mg/Kg-dr	y 1	7/9/2010
Bromomethane	ND	0.0098	mg/Kg-dr	y 1	7/9/2010
2-Butanone	ND	0.074	mg/Kg-dr	y 1	7/9/2010
Carbon disulfide	ND	0.049	mg/Kg-dr	y 1	7/9/2010
Carbon tetrachloride	ND	0.0049	mg/Kg-dr	y 1	7/9/2010
Chlorobenzene	ND	0.0049	mg/Kg-dr	y 1	7/9/2010
Chloroethane	ND	0.0098	mg/Kg-dr	y 1	7/9/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time
* - Non-accredited parameter

RL - $Reporting\ /\ Quantitation\ Limit\ for\ the\ analysis$

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-010 Client Sample ID: KP5A

Collection Date: 7/6/2010 9:45:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: EJH
Chloroform	ND	0.0049	mg/Kg-dry	1	7/9/2010
Chloromethane	ND	0.0098	mg/Kg-dry	1	7/9/2010
Dibromochloromethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,1-Dichloroethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,2-Dichloroethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,1-Dichloroethene	ND	0.0049	mg/Kg-dry	1	7/9/2010
cis-1,2-Dichloroethene	ND	0.0049	mg/Kg-dry	1	7/9/2010
trans-1,2-Dichloroethene	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,2-Dichloropropane	ND	0.0049	mg/Kg-dry	1	7/9/2010
cis-1,3-Dichloropropene	ND	0.002	mg/Kg-dry	1	7/9/2010
trans-1,3-Dichloropropene	ND	0.002	mg/Kg-dry	1	7/9/2010
Ethylbenzene	ND	0.0049	mg/Kg-dry	1	7/9/2010
2-Hexanone	ND	0.02	mg/Kg-dry	1	7/9/2010
4-Methyl-2-pentanone	ND	0.02	mg/Kg-dry	1	7/9/2010
Methylene chloride	ND	0.0098	mg/Kg-dry	1	7/9/2010
Methyl tert-butyl ether	ND	0.0049	mg/Kg-dry	1	7/9/2010
Styrene	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,1,2,2-Tetrachloroethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
Tetrachloroethene	ND	0.0049	mg/Kg-dry	1	7/9/2010
Toluene	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,1,1-Trichloroethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
1,1,2-Trichloroethane	ND	0.0049	mg/Kg-dry	1	7/9/2010
Trichloroethene	ND	0.0049	mg/Kg-dry	1	7/9/2010
Vinyl chloride	ND	0.0049	mg/Kg-dry	1	7/9/2010
Xylenes, Total	ND	0.015	mg/Kg-dry	1	7/9/2010
Percent Moisture	D297	' 4	Prep	Date: 7/6/2010	Analyst: JP
Percent Moisture	19.2	0.2	* wt%	1	7/7/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-011 Client Sample ID: KP5B

Collection Date: 7/6/2010 9:45:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 7/7/2010	Analyst: VA
Mercury	ND	0.03	mg/Kg-dry	1	7/7/2010
Metals by ICP/MS	SW6	020 (SW3	050B) Prep	Date: 7/8/2010	Analyst: JG
Arsenic	12	1.1	mg/Kg-dry		7/9/2010
Barium	72	1.1	mg/Kg-dry	10	7/9/2010
Cadmium	ND	0.55	mg/Kg-dry	10	7/9/2010
Chromium	21	1.1	mg/Kg-dry	10	7/9/2010
Lead	13	0.55	mg/Kg-dry	10	7/9/2010
Selenium	ND	1.1	mg/Kg-dry	10	7/9/2010
Silver	ND	1.1	mg/Kg-dry	10	7/9/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3550B) Prep	Date: 7/7/2010	Analyst: VS
Acenaphthene	ND	0.031	mg/Kg-dry		7/12/2010
Acenaphthylene	ND	0.031	mg/Kg-dry	1	7/12/2010
Anthracene	ND	0.031	mg/Kg-dry		7/12/2010
Benz(a)anthracene	ND	0.031	mg/Kg-dry		7/12/2010
Benzo(a)pyrene	ND	0.031	mg/Kg-dry		7/12/2010
Benzo(b)fluoranthene	ND	0.031	mg/Kg-dry		7/12/2010
Benzo(g,h,i)perylene	ND	0.031	mg/Kg-dry		7/12/2010
Benzo(k)fluoranthene	ND	0.031	mg/Kg-dry		7/12/2010
Chrysene	ND	0.031	mg/Kg-dry		7/12/2010
Dibenz(a,h)anthracene	ND	0.031	mg/Kg-dry	1	7/12/2010
Fluoranthene	ND	0.031	mg/Kg-dry	1	7/12/2010
Fluorene	ND	0.031	mg/Kg-dry		7/12/2010
Indeno(1,2,3-cd)pyrene	ND	0.031	mg/Kg-dry	1	7/12/2010
Naphthalene	ND	0.031	mg/Kg-dry		7/12/2010
Phenanthrene	ND	0.031	mg/Kg-dry		7/12/2010
Pyrene	ND	0.031	mg/Kg-dry	1	7/12/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260E	B Pres	Date: 7/7/2010	Analyst: ART
Acetone	ND	0.069	mg/Kg-dry	1	7/10/2010
Benzene	ND	0.0046	mg/Kg-dry		7/10/2010
Bromodichloromethane	ND	0.0046	mg/Kg-dry		7/10/2010
Bromoform	ND	0.0046	mg/Kg-dry		7/10/2010
Bromomethane	ND	0.0092	mg/Kg-dry		7/10/2010
2-Butanone	ND	0.069	mg/Kg-dry		7/10/2010
Carbon disulfide	ND	0.046	mg/Kg-dry		7/10/2010
Carbon tetrachloride	ND	0.0046	mg/Kg-dry		7/10/2010
Chlorobenzene	ND	0.0046	mg/Kg-dry		7/10/2010
Chloroethane	ND	0.0092	mg/Kg-dry		7/10/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-011

Client Sample ID: KP5B

Collection Date: 7/6/2010 9:45:00 AM

Matrix: Soil

Analyses	Result	RL Qu	alifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: ART
Chloroform	ND	0.0046	mg/Kg-dry	1	7/10/2010
Chloromethane	ND	0.0092	mg/Kg-dry	1	7/10/2010
Dibromochloromethane	ND	0.0046	mg/Kg-dry	1	7/10/2010
1,1-Dichloroethane	ND	0.0046	mg/Kg-dry	1	7/10/2010
1,2-Dichloroethane	ND	0.0046	mg/Kg-dry	1	7/10/2010
1,1-Dichloroethene	ND	0.0046	mg/Kg-dry	1	7/10/2010
cis-1,2-Dichloroethene	ND	0.0046	mg/Kg-dry	1	7/10/2010
trans-1,2-Dichloroethene	ND	0.0046	mg/Kg-dry	1	7/10/2010
1,2-Dichloropropane	ND	0.0046	mg/Kg-dry	1	7/10/2010
cis-1,3-Dichloropropene	ND	0.0018	mg/Kg-dry	1	7/10/2010
trans-1,3-Dichloropropene	ND	0.0018	mg/Kg-dry	1	7/10/2010
Ethylbenzene	ND	0.0046	mg/Kg-dry	1	7/10/2010
2-Hexanone	ND	0.018	mg/Kg-dry	1	7/10/2010
4-Methyl-2-pentanone	ND	0.018	mg/Kg-dry	1	7/10/2010
Methylene chloride	ND	0.0092	mg/Kg-dry	1	7/10/2010
Methyl tert-butyl ether	ND	0.0046	mg/Kg-dry	1	7/10/2010
Styrene	ND	0.0046	mg/Kg-dry	1	7/10/2010
1,1,2,2-Tetrachloroethane	ND	0.0046	mg/Kg-dry	1	7/10/2010
Tetrachloroethene	ND	0.0046	mg/Kg-dry	1	7/10/2010
Toluene	ND	0.0046	mg/Kg-dry	1	7/10/2010
1,1,1-Trichloroethane	ND	0.0046	mg/Kg-dry	1	7/10/2010
1,1,2-Trichloroethane	ND	0.0046	mg/Kg-dry	1	7/10/2010
Trichloroethene	ND	0.0046	mg/Kg-dry	1	7/10/2010
Vinyl chloride	ND	0.0046	mg/Kg-dry	1	7/10/2010
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/10/2010
Percent Moisture	D297	74	Prep	Date: 7/6/2010	Analyst: JP
Percent Moisture	19.0	0.2	* wt%	1	7/7/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-012 **Client Sample ID:** KP6A

Collection Date: 7/6/2010 10:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 7/7/2010	Analyst: VA
Mercury	0.032	0.028	mg/Kg-dry	1	7/7/2010
Metals by ICP/MS	SW6	020 (SW3	050B) Prep	Date: 7/8/2010	Analyst: JG
Arsenic	5.9	1.1	mg/Kg-dry	10	7/9/2010
Barium	83	1.1	mg/Kg-dry	10	7/9/2010
Cadmium	ND	0.54	mg/Kg-dry	10	7/9/2010
Chromium	27	1.1	mg/Kg-dry	10	7/9/2010
Lead	22	0.54	mg/Kg-dry	10	7/9/2010
Selenium	ND	1.1	mg/Kg-dry	10	7/9/2010
Silver	ND	1.1	mg/Kg-dry	10	7/9/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3550B) Prep	Date: 7/7/2010	Analyst: VS
Acenaphthene	ND	0.03	mg/Kg-dry	1	7/12/2010
Acenaphthylene	ND	0.03	mg/Kg-dry	1	7/12/2010
Anthracene	ND	0.03	mg/Kg-dry	1	7/12/2010
Benz(a)anthracene	ND	0.03	mg/Kg-dry	1	7/12/2010
Benzo(a)pyrene	ND	0.03	mg/Kg-dry	1	7/12/2010
Benzo(b)fluoranthene	ND	0.03	mg/Kg-dry	1	7/12/2010
Benzo(g,h,i)perylene	ND	0.03	mg/Kg-dry	1	7/12/2010
Benzo(k)fluoranthene	ND	0.03	mg/Kg-dry	1	7/12/2010
Chrysene	ND	0.03	mg/Kg-dry	1	7/12/2010
Dibenz(a,h)anthracene	ND	0.03	mg/Kg-dry	1	7/12/2010
Fluoranthene	ND	0.03	mg/Kg-dry	1	7/12/2010
Fluorene	ND	0.03	mg/Kg-dry	1	7/12/2010
Indeno(1,2,3-cd)pyrene	ND	0.03	mg/Kg-dry	1	7/12/2010
Naphthalene	ND	0.03	mg/Kg-dry	1	7/12/2010
Phenanthrene	ND	0.03	mg/Kg-dry	1	7/12/2010
Pyrene	ND	0.03	mg/Kg-dry	1	7/12/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: ART
Acetone	ND	0.067	mg/Kg-dry	1	7/10/2010
Benzene	ND	0.0045	mg/Kg-dry	1	7/10/2010
Bromodichloromethane	ND	0.0045	mg/Kg-dry	1	7/10/2010
Bromoform	ND	0.0045	mg/Kg-dry	1	7/10/2010
Bromomethane	ND	0.0089	mg/Kg-dry	1	7/10/2010
2-Butanone	ND	0.067	mg/Kg-dry	1	7/10/2010
Carbon disulfide	ND	0.045	mg/Kg-dry	1	7/10/2010
Carbon tetrachloride	ND	0.0045	mg/Kg-dry	1	7/10/2010
Chlorobenzene	ND	0.0045	mg/Kg-dry	1	7/10/2010
Chloroethane	ND	0.0089	mg/Kg-dry	1	7/10/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-012

Client Sample ID: KP6A

Collection Date: 7/6/2010 10:15:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep I	Date: 7/7/2010	Analyst: ART
Chloroform	ND	0.0045	mg/Kg-dry	1	7/10/2010
Chloromethane	ND	0.0089	mg/Kg-dry	1	7/10/2010
Dibromochloromethane	ND	0.0045	mg/Kg-dry	1	7/10/2010
1,1-Dichloroethane	ND	0.0045	mg/Kg-dry	1	7/10/2010
1,2-Dichloroethane	ND	0.0045	mg/Kg-dry	1	7/10/2010
1,1-Dichloroethene	ND	0.0045	mg/Kg-dry	1	7/10/2010
cis-1,2-Dichloroethene	ND	0.0045	mg/Kg-dry	1	7/10/2010
trans-1,2-Dichloroethene	ND	0.0045	mg/Kg-dry	1	7/10/2010
1,2-Dichloropropane	ND	0.0045	mg/Kg-dry	1	7/10/2010
cis-1,3-Dichloropropene	ND	0.0018	mg/Kg-dry	1	7/10/2010
trans-1,3-Dichloropropene	ND	0.0018	mg/Kg-dry	1	7/10/2010
Ethylbenzene	ND	0.0045	mg/Kg-dry	1	7/10/2010
2-Hexanone	ND	0.018	mg/Kg-dry	1	7/10/2010
4-Methyl-2-pentanone	ND	0.018	mg/Kg-dry	1	7/10/2010
Methylene chloride	ND	0.0089	mg/Kg-dry	1	7/10/2010
Methyl tert-butyl ether	ND	0.0045	mg/Kg-dry	1	7/10/2010
Styrene	ND	0.0045	mg/Kg-dry	1	7/10/2010
1,1,2,2-Tetrachloroethane	ND	0.0045	mg/Kg-dry	1	7/10/2010
Tetrachloroethene	ND	0.0045	mg/Kg-dry	1	7/10/2010
Toluene	ND	0.0045	mg/Kg-dry	1	7/10/2010
1,1,1-Trichloroethane	ND	0.0045	mg/Kg-dry	1	7/10/2010
1,1,2-Trichloroethane	ND	0.0045	mg/Kg-dry	1	7/10/2010
Trichloroethene	ND	0.0045	mg/Kg-dry	1	7/10/2010
Vinyl chloride	ND	0.0045	mg/Kg-dry	1	7/10/2010
Xylenes, Total	ND	0.013	mg/Kg-dry	1	7/10/2010
Percent Moisture	D297	' 4	Prep I	Date: 7/6/2010	Analyst: JP
Percent Moisture	17.4	0.2	* wt%	1	7/7/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-013

Client Sample ID: KP6B

Collection Date: 7/6/2010 10:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 7/7/2010	Analyst: VA
Mercury	ND	0.028	mg/Kg-dry	1	7/7/2010
Metals by ICP/MS	SW6	020 (SW30)50B) Prep	Date: 7/8/2010	Analyst: JG
Arsenic	9.4	1.2	mg/Kg-dry	10	7/8/2010
Barium	77	1.2	mg/Kg-dry	10	7/8/2010
Cadmium	ND	0.59	mg/Kg-dry	10	7/8/2010
Chromium	18	1.2	mg/Kg-dry	10	7/9/2010
Lead	16	0.59	mg/Kg-dry	10	7/8/2010
Selenium	ND	1.2	mg/Kg-dry	10	7/8/2010
Silver	ND	1.2	mg/Kg-dry	10	7/8/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3550B) Prep	Date: 7/7/2010	Analyst: VS
Acenaphthene	ND	0.031	mg/Kg-dry	1	7/12/2010
Acenaphthylene	ND	0.031	mg/Kg-dry	1	7/12/2010
Anthracene	ND	0.031	mg/Kg-dry	1	7/12/2010
Benz(a)anthracene	ND	0.031	mg/Kg-dry	1	7/12/2010
Benzo(a)pyrene	ND	0.031	mg/Kg-dry	1	7/12/2010
Benzo(b)fluoranthene	ND	0.031	mg/Kg-dry	1	7/12/2010
Benzo(g,h,i)perylene	ND	0.031	mg/Kg-dry	1	7/12/2010
Benzo(k)fluoranthene	ND	0.031	mg/Kg-dry	1	7/12/2010
Chrysene	ND	0.031	mg/Kg-dry	1	7/12/2010
Dibenz(a,h)anthracene	ND	0.031	mg/Kg-dry	1	7/12/2010
Fluoranthene	ND	0.031	mg/Kg-dry	1	7/12/2010
Fluorene	ND	0.031	mg/Kg-dry	1	7/12/2010
Indeno(1,2,3-cd)pyrene	ND	0.031	mg/Kg-dry	1	7/12/2010
Naphthalene	ND	0.031	mg/Kg-dry	1	7/12/2010
Phenanthrene	ND	0.031	mg/Kg-dry	1	7/12/2010
Pyrene	ND	0.031	mg/Kg-dry	1	7/12/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: ART
Acetone	ND	0.07	mg/Kg-dry	1	7/10/2010
Benzene	ND	0.0047	mg/Kg-dry	1	7/10/2010
Bromodichloromethane	ND	0.0047	mg/Kg-dry	1	7/10/2010
Bromoform	ND	0.0047	mg/Kg-dry	1	7/10/2010
Bromomethane	ND	0.0093	mg/Kg-dry	1	7/10/2010
2-Butanone	ND	0.07	mg/Kg-dry	1	7/10/2010
Carbon disulfide	ND	0.047	mg/Kg-dry	1	7/10/2010
Carbon tetrachloride	ND	0.0047	mg/Kg-dry	1	7/10/2010
Chlorobenzene	ND	0.0047	mg/Kg-dry	1	7/10/2010
Chloroethane	ND	0.0093	mg/Kg-dry	1	7/10/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

ii iioiding time exec

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-013

Client Sample ID: KP6B

Collection Date: 7/6/2010 10:15:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep I	Date: 7/7/2010	Analyst: ART
Chloroform	ND	0.0047	mg/Kg-dry	1	7/10/2010
Chloromethane	ND	0.0093	mg/Kg-dry	1	7/10/2010
Dibromochloromethane	ND	0.0047	mg/Kg-dry	1	7/10/2010
1,1-Dichloroethane	ND	0.0047	mg/Kg-dry	1	7/10/2010
1,2-Dichloroethane	ND	0.0047	mg/Kg-dry	1	7/10/2010
1,1-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/10/2010
cis-1,2-Dichloroethene	0.014	0.0047	mg/Kg-dry	1	7/10/2010
trans-1,2-Dichloroethene	ND	0.0047	mg/Kg-dry	1	7/10/2010
1,2-Dichloropropane	ND	0.0047	mg/Kg-dry	1	7/10/2010
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/10/2010
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/10/2010
Ethylbenzene	ND	0.0047	mg/Kg-dry	1	7/10/2010
2-Hexanone	ND	0.019	mg/Kg-dry	1	7/10/2010
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	7/10/2010
Methylene chloride	ND	0.0093	mg/Kg-dry	1	7/10/2010
Methyl tert-butyl ether	ND	0.0047	mg/Kg-dry	1	7/10/2010
Styrene	ND	0.0047	mg/Kg-dry	1	7/10/2010
1,1,2,2-Tetrachloroethane	ND	0.0047	mg/Kg-dry	1	7/10/2010
Tetrachloroethene	ND	0.0047	mg/Kg-dry	1	7/10/2010
Toluene	ND	0.0047	mg/Kg-dry	1	7/10/2010
1,1,1-Trichloroethane	ND	0.0047	mg/Kg-dry	1	7/10/2010
1,1,2-Trichloroethane	ND	0.0047	mg/Kg-dry	1	7/10/2010
Trichloroethene	0.0093	0.0047	mg/Kg-dry	1	7/10/2010
Vinyl chloride	ND	0.0047	mg/Kg-dry	1	7/10/2010
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/10/2010
Percent Moisture	D297	74	Prep I	Date: 7/6/2010	Analyst: JP
Percent Moisture	19.0	0.2	* wt%	1	7/7/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-014

Client Sample ID: KP7A

Collection Date: 7/6/2010 10:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 7/7/2010	Analyst: VA
Mercury	ND	0.029	mg/Kg-dry	1	7/7/2010
Metals by ICP/MS	SW6	020 (SW30	950B) Prep	Date: 7/8/2010	Analyst: JG
Arsenic	6.6	1.2	mg/Kg-dry	10	7/9/2010
Barium	71	1.2	mg/Kg-dry	10	7/9/2010
Cadmium	ND	0.59	mg/Kg-dry	10	7/9/2010
Chromium	27	1.2	mg/Kg-dry	10	7/9/2010
Lead	23	0.59	mg/Kg-dry	10	7/9/2010
Selenium	ND	1.2	mg/Kg-dry	10	7/9/2010
Silver	ND	1.2	mg/Kg-dry	10	7/9/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3550B) Prep	Date: 7/7/2010	Analyst: VS
Acenaphthene	ND	0.031	mg/Kg-dry	1	7/12/2010
Acenaphthylene	ND	0.031	mg/Kg-dry	1	7/12/2010
Anthracene	ND	0.031	mg/Kg-dry	1	7/12/2010
Benz(a)anthracene	ND	0.031	mg/Kg-dry	1	7/12/2010
Benzo(a)pyrene	ND	0.031	mg/Kg-dry	1	7/12/2010
Benzo(b)fluoranthene	ND	0.031	mg/Kg-dry	1	7/12/2010
Benzo(g,h,i)perylene	ND	0.031	mg/Kg-dry	1	7/12/2010
Benzo(k)fluoranthene	ND	0.031	mg/Kg-dry	1	7/12/2010
Chrysene	ND	0.031	mg/Kg-dry	1	7/12/2010
Dibenz(a,h)anthracene	ND	0.031	mg/Kg-dry	1	7/12/2010
Fluoranthene	ND	0.031	mg/Kg-dry	1	7/12/2010
Fluorene	ND	0.031	mg/Kg-dry	1	7/12/2010
Indeno(1,2,3-cd)pyrene	ND	0.031	mg/Kg-dry	1	7/12/2010
Naphthalene	ND	0.031	mg/Kg-dry	1	7/12/2010
Phenanthrene	ND	0.031	mg/Kg-dry	1	7/12/2010
Pyrene	ND	0.031	mg/Kg-dry	1	7/12/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: ART
Acetone	ND	0.078	mg/Kg-dry	1	7/10/2010
Benzene	ND	0.0052	mg/Kg-dry	1	7/10/2010
Bromodichloromethane	ND	0.0052	mg/Kg-dry	1	7/10/2010
Bromoform	ND	0.0052	mg/Kg-dry	1	7/10/2010
Bromomethane	ND	0.01	mg/Kg-dry	1	7/10/2010
2-Butanone	ND	0.078	mg/Kg-dry	1	7/10/2010
Carbon disulfide	ND	0.052	mg/Kg-dry	1	7/10/2010
Carbon tetrachloride	ND	0.0052	mg/Kg-dry	1	7/10/2010
Chlorobenzene	ND	0.0052	mg/Kg-dry	1	7/10/2010
Chloroethane	ND	0.01	mg/Kg-dry	1	7/10/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

6.05

Page 28 of 35

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-014 Client Sample ID: KP7A

Collection Date: 7/6/2010 10:30:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: ART
Chloroform	ND	0.0052	mg/Kg-dry	1	7/10/2010
Chloromethane	ND	0.01	mg/Kg-dry	1	7/10/2010
Dibromochloromethane	ND	0.0052	mg/Kg-dry	1	7/10/2010
1,1-Dichloroethane	ND	0.0052	mg/Kg-dry	1	7/10/2010
1,2-Dichloroethane	ND	0.0052	mg/Kg-dry	1	7/10/2010
1,1-Dichloroethene	ND	0.0052	mg/Kg-dry	1	7/10/2010
cis-1,2-Dichloroethene	ND	0.0052	mg/Kg-dry	1	7/10/2010
trans-1,2-Dichloroethene	ND	0.0052	mg/Kg-dry	1	7/10/2010
1,2-Dichloropropane	ND	0.0052	mg/Kg-dry	1	7/10/2010
cis-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	7/10/2010
trans-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	7/10/2010
Ethylbenzene	ND	0.0052	mg/Kg-dry	1	7/10/2010
2-Hexanone	ND	0.021	mg/Kg-dry	1	7/10/2010
4-Methyl-2-pentanone	ND	0.021	mg/Kg-dry	1	7/10/2010
Methylene chloride	ND	0.01	mg/Kg-dry	1	7/10/2010
Methyl tert-butyl ether	ND	0.0052	mg/Kg-dry	1	7/10/2010
Styrene	ND	0.0052	mg/Kg-dry	1	7/10/2010
1,1,2,2-Tetrachloroethane	ND	0.0052	mg/Kg-dry	1	7/10/2010
Tetrachloroethene	ND	0.0052	mg/Kg-dry	1	7/10/2010
Toluene	ND	0.0052	mg/Kg-dry	1	7/10/2010
1,1,1-Trichloroethane	ND	0.0052	mg/Kg-dry	1	7/10/2010
1,1,2-Trichloroethane	ND	0.0052	mg/Kg-dry	1	7/10/2010
Trichloroethene	ND	0.0052	mg/Kg-dry	1	7/10/2010
Vinyl chloride	ND	0.0052	mg/Kg-dry	1	7/10/2010
Xylenes, Total	ND	0.016	mg/Kg-dry	1	7/10/2010
Percent Moisture	D297	74	Prep	Date: 7/6/2010	Analyst: JP
Percent Moisture	20.0	0.2	* wt%	1	7/7/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-015

Client Sample ID: KP7B

Collection Date: 7/6/2010 10:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Mercury	SW7	471A	Prep	Date: 7/7/2010	Analyst: VA
Mercury	0.029	0.027	mg/Kg-dry	1	7/7/2010
Metals by ICP/MS	SW6	020 (SW30	50B) Prep	Date: 7/8/2010	Analyst: JG
Arsenic	14	1	mg/Kg-dry	10	7/9/2010
Barium	17	1	mg/Kg-dry	10	7/9/2010
Cadmium	ND	0.51	mg/Kg-dry	10	7/9/2010
Chromium	15	1	mg/Kg-dry	10	7/9/2010
Lead	20	0.51	mg/Kg-dry	10	7/9/2010
Selenium	ND	1	mg/Kg-dry	10	7/9/2010
Silver	ND	1	mg/Kg-dry	10	7/9/2010
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM ((SW3550B) Prep	Date: 7/7/2010	Analyst: VS
Acenaphthene	ND	0.028	mg/Kg-dry	1	7/12/2010
Acenaphthylene	ND	0.028	mg/Kg-dry	1	7/12/2010
Anthracene	ND	0.028	mg/Kg-dry	1	7/12/2010
Benz(a)anthracene	ND	0.028	mg/Kg-dry	1	7/12/2010
Benzo(a)pyrene	ND	0.028	mg/Kg-dry	1	7/12/2010
Benzo(b)fluoranthene	ND	0.028	mg/Kg-dry	1	7/12/2010
Benzo(g,h,i)perylene	ND	0.028	mg/Kg-dry	1	7/12/2010
Benzo(k)fluoranthene	ND	0.028	mg/Kg-dry	1	7/12/2010
Chrysene	ND	0.028	mg/Kg-dry	1	7/12/2010
Dibenz(a,h)anthracene	ND	0.028	mg/Kg-dry	1	7/12/2010
Fluoranthene	ND	0.028	mg/Kg-dry	1	7/12/2010
Fluorene	ND	0.028	mg/Kg-dry	1	7/12/2010
Indeno(1,2,3-cd)pyrene	ND	0.028	mg/Kg-dry	1	7/12/2010
Naphthalene	ND	0.028	mg/Kg-dry	1	7/12/2010
Phenanthrene	ND	0.028	mg/Kg-dry	1	7/12/2010
Pyrene	ND	0.028	mg/Kg-dry	1	7/12/2010
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: ART
Acetone	ND	0.07	mg/Kg-dry	1	7/10/2010
Benzene	ND	0.0046	mg/Kg-dry	1	7/10/2010
Bromodichloromethane	ND	0.0046	mg/Kg-dry	1	7/10/2010
Bromoform	ND	0.0046	mg/Kg-dry	1	7/10/2010
Bromomethane	ND	0.0093	mg/Kg-dry	1	7/10/2010
2-Butanone	ND	0.07	mg/Kg-dry	1	7/10/2010
Carbon disulfide	ND	0.046	mg/Kg-dry	1	7/10/2010
Carbon tetrachloride	ND	0.0046	mg/Kg-dry	1	7/10/2010
Chlorobenzene	ND	0.0046	mg/Kg-dry	1	7/10/2010
Chloroethane	ND	0.0093	mg/Kg-dry	1	7/10/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

D. DDD outside accepted acceptant limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-015

Client Sample ID: KP7B

Collection Date: 7/6/2010 10:30:00 AM

Matrix: Soil

Analyses	Result	RL Qu	alifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 7/7/2010	Analyst: ART
Chloroform	ND	0.0046	mg/Kg-dry	1	7/10/2010
Chloromethane	ND	0.0093	mg/Kg-dry	1	7/10/2010
Dibromochloromethane	ND	0.0046	mg/Kg-dry	1	7/10/2010
1,1-Dichloroethane	ND	0.0046	mg/Kg-dry	1	7/10/2010
1,2-Dichloroethane	ND	0.0046	mg/Kg-dry	1	7/10/2010
1,1-Dichloroethene	ND	0.0046	mg/Kg-dry	1	7/10/2010
cis-1,2-Dichloroethene	ND	0.0046	mg/Kg-dry	1	7/10/2010
trans-1,2-Dichloroethene	ND	0.0046	mg/Kg-dry	1	7/10/2010
1,2-Dichloropropane	ND	0.0046	mg/Kg-dry	1	7/10/2010
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/10/2010
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dry	1	7/10/2010
Ethylbenzene	ND	0.0046	mg/Kg-dry	1	7/10/2010
2-Hexanone	ND	0.019	mg/Kg-dry	1	7/10/2010
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dry	1	7/10/2010
Methylene chloride	ND	0.0093	mg/Kg-dry	1	7/10/2010
Methyl tert-butyl ether	ND	0.0046	mg/Kg-dry	1	7/10/2010
Styrene	ND	0.0046	mg/Kg-dry	1	7/10/2010
1,1,2,2-Tetrachloroethane	ND	0.0046	mg/Kg-dry	1	7/10/2010
Tetrachloroethene	ND	0.0046	mg/Kg-dry	1	7/10/2010
Toluene	ND	0.0046	mg/Kg-dry	1	7/10/2010
1,1,1-Trichloroethane	ND	0.0046	mg/Kg-dry	1	7/10/2010
1,1,2-Trichloroethane	ND	0.0046	mg/Kg-dry	1	7/10/2010
Trichloroethene	ND	0.0046	mg/Kg-dry	1	7/10/2010
Vinyl chloride	ND	0.0046	mg/Kg-dry	1	7/10/2010
Xylenes, Total	ND	0.014	mg/Kg-dry	1	7/10/2010
Percent Moisture	D297	74	Prep	Date: 7/6/2010	Analyst: JP
Percent Moisture	12.4	0.2	* wt%	1	7/7/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

11 Holding time ca

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-016

Client Sample ID: KP1W

Collection Date: 7/6/2010 11:00:00 AM

Matrix: Aqueous

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Polynuclear Aromatic Hydrocarbons	SW8	270C-SIM	(SW3510C)	Pre	p Date: 7/7/2010	Analyst: VS
Acenaphthene	ND	0.001	,	mg/L	1	7/12/2010
Acenaphthylene	ND	0.001		mg/L	1	7/12/2010
Anthracene	ND	0.001		mg/L	1	7/12/2010
Benz(a)anthracene	ND	0.0001		mg/L	1	7/12/2010
Benzo(a)pyrene	ND	0.0001		mg/L	1	7/12/2010
Benzo(b)fluoranthene	ND	0.0001		mg/L	1	7/12/2010
Benzo(g,h,i)perylene	ND	0.001		mg/L	1	7/12/2010
Benzo(k)fluoranthene	ND	0.0001		mg/L	1	7/12/2010
Chrysene	ND	0.0001		mg/L	1	7/12/2010
Dibenz(a,h)anthracene	ND	0.0001		mg/L	1	7/12/2010
Fluoranthene	ND	0.001		mg/L	1	7/12/2010
Fluorene	ND	0.001		mg/L	1	7/12/2010
Indeno(1,2,3-cd)pyrene	ND	0.0001		mg/L	1	7/12/2010
Naphthalene	ND	0.001		mg/L	1	7/12/2010
Phenanthrene	ND	0.001		mg/L	1	7/12/2010
Pyrene	ND	0.001		mg/L	1	7/12/2010
Volatile Organic Compounds by GC/MS	SW8	260B (SW	/5030B)	Pre	p Date:	Analyst: PS
Acetone	ND	0.1		mg/L	5	7/11/2010
Benzene	ND	0.025		mg/L	5	7/11/2010
Bromodichloromethane	ND	0.025		mg/L	5	7/11/2010
Bromoform	ND	0.025		mg/L	5	7/11/2010
Bromomethane	ND	0.05		mg/L	5	7/11/2010
2-Butanone	ND	0.1		mg/L	5	7/11/2010
Carbon disulfide	ND	0.05		mg/L	5	7/11/2010
Carbon tetrachloride	ND	0.025		mg/L	5	7/11/2010
Chlorobenzene	ND	0.025		mg/L	5	7/11/2010
Chloroethane	ND	0.05		mg/L	5	7/11/2010
Chloroform	ND	0.025		mg/L	5	7/11/2010
Chloromethane	ND	0.05		mg/L	5	7/11/2010
Dibromochloromethane	ND	0.025		mg/L	5	7/11/2010
1,1-Dichloroethane	ND	0.025		mg/L	5	7/11/2010
1,2-Dichloroethane	ND	0.025		mg/L	5	7/11/2010
1,1-Dichloroethene	ND	0.025		mg/L	5	7/11/2010
cis-1,2-Dichloroethene	0.62	0.025		mg/L	5	7/11/2010
trans-1,2-Dichloroethene	0.044	0.025		mg/L	5	7/11/2010
1,2-Dichloropropane	ND	0.025		mg/L	5	7/11/2010
cis-1,3-Dichloropropene	ND	0.005		mg/L	5	7/11/2010
trans-1,3-Dichloropropene	ND	0.005		mg/L	5	7/11/2010

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

K - KFD outside accepted recovery min

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditation Numbers: IEPA ELAP 100445; ORELAP IL300001; AIHA 101160; NVLAP LabCode 101202-0

Date Reported: July 13, 2010 **Date Printed:** July 13, 2010

Client: K-Plus Environmental, Inc.

Lab Order: 10070107

Project: 17094L1926, Defender Door, 1926 S. Laramie

Lab ID: 10070107-016

Client Sample ID: KP1W

Collection Date: 7/6/2010 11:00:00 AM

Matrix: Aqueous

Analyses	Result	RL Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW82	260B (SW5030B)	Prep	Date:	Analyst: PS
Ethylbenzene	ND	0.025	mg/L	5	7/11/2010
2-Hexanone	ND	0.1	mg/L	5	7/11/2010
4-Methyl-2-pentanone	ND	0.1	mg/L	5	7/11/2010
Methylene chloride	ND	0.025	mg/L	5	7/11/2010
Methyl tert-butyl ether	ND	0.025	mg/L	5	7/11/2010
Styrene	ND	0.025	mg/L	5	7/11/2010
1,1,2,2-Tetrachloroethane	ND	0.025	mg/L	5	7/11/2010
Tetrachloroethene	ND	0.025	mg/L	5	7/11/2010
Toluene	ND	0.025	mg/L	5	7/11/2010
1,1,1-Trichloroethane	ND	0.025	mg/L	5	7/11/2010
1,1,2-Trichloroethane	ND	0.025	mg/L	5	7/11/2010
Trichloroethene	ND	0.025	mg/L	5	7/11/2010
Vinyl chloride	0.15	0.01	mg/L	5	7/11/2010
Xylenes, Total	ND	0.075	mg/L	5	7/11/2010

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

R - RI D outside accepted recovery mini

E - Value above quantitation range

STAT Analysis Corporation
2242 W. Harrison, Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386
e-mail address: STATinfo(a.STATAnalysis.com AIHA, NYLAP and NELAP accredited

Company: K-17LCS Project Number: 17CG+L-1920 Project Name: 7CCG+L-1920 Project Location: 14726 S. LARTANNIC Sampler(s): 14726 S. LARTANNIC Report To: PROJECT OCCENT Report To: PROJEC	Client Tracking No.:						
17044 1726 S.C. 1726 S.C. SSICA KIAL 2 3 Lumber/Description	Client Tracking		F.O. 70.:				
Officially Signal Signal And		3 No.:					
ion: 1476 S. C. L. Scica Kian. 2 3 2 3			Quote No.:				
CSSICA NA d S. 2 3 Number/Description:							/
	ā						\
	Fhone:					15	Turn Around
 	e-mail:						Results Needed
	Time Matrix Comp.	No. of Containers	THE REPORT OF THE PERSON OF TH			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	am/pm
11/10		+				Kemarks	Lab No.:
3	1	,			X		000
3/2	П	4	X				500
7/6		<i>h</i>	X				₽ 0 0
7/0	X 115 048	,			X		NOV
7/6	X 1/18 36	h	XXX				1000
76	900 Soil X	fr	X				787
710		, <i>†</i>	X				700
2/6	X 112 26	<i>j</i> ,	X				900
7/6	945 SVI X	1 /	X				0
7/6	95 811 X	f	X				20
7/6		T T	XXX				7 0
5		7	X				210
7/6	1030 SOV X	6	XXX				4
B 7/16		Ó	X				S 1 0
7-							
1/6	1/ac Millow	***	X X				310
100							
Relinquished by: (Signaturo)	Date/Tingl6/1	1/30	Comments:		Labograi	abaratory Work Order No.:	D.\$
Received by: (Signature)	Date/Time:>/6/	15 (130				(ろうし)	7
Relinquished by: (Signature)	Date/Time:					つくつ	``
Received by: (Signature)	Date/Time:				Rece	Received on Ice: Yes 🔽 No	Z No
Relinquianed by: (Signature)	Date/Time:		Preservation Code: A = None	$B = HNO_3$	C = NaOH		
Received by: (Signature)	Date/Time:		$D = H_2SO_4$ $E = HCI$ $F =$	F = 5035/EnCore G = Other		Temperanne:	ر -

STAT Analysis Corporation

Sample Receipt Checklist

Client Name K-PLUS			Date and Tim	ne Received:	7/6/2010 11:30:00 AM
Work Order Number 10070107	111	- 1	Received by:	CDF	
Checklist completed by:	M Date	16/10	Reviewed by:	Initials	7 (7) O Date
Matrix:	Carrier name	Client Delivered			
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present	
Custody seals intact on shippping container/c	ooler?	Yes	No 🗌	Not Present 🗹	
Custody seals intact on sample bottles?		Yes	No 🗔	Not Present 🗹	
Chain of custody present?		Yes 🗸	No 🗌		
Chain of custody signed when relinquished ar	nd received?	Yes 🗸	No 🗌		
Chain of custody agrees with sample labels/c	ontainers?	Yes 🗹	No 🔲		
Samples in proper container/bottle?		Yes 🗸	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌	į	
Sufficient sample volume for indicated test?		Yes 🗹	No 🗔		
All samples received within holding time?		Yes 🗹	No 🗔		
Container or Temp Blank temperature in com	pliance?	Yes 🗸	No 🗌	Temperature	1.4 °C
Water - VOA vials have zero headspace?	No VOA vials subm	nitted	Yes 🛂	No 🗌	
Water - Samples pH checked?		Yes 🗔	No 🗔	Checked by:	
Water - Samples properly preserved?		Yes 🗌	No 🖂	pH Adjusted?	
				8	
Any No response must be detailed in the comments section below.					
Comments:					
·					
			-		
			•		
Client / Person contacted: Date contacted:		Contacted by:			
				is the second	
Response:		····			·

APPENDIX 5 INSPECTOR QUALIFICATIONS

Title: President

Education:

MM, Finance and
Managerial Economics,
J.L. Kellogg Graduate
School of Management,
Northwestern
University

MPH, Industrial Hygiene and Safety Engineering, University of Illinois at Chicago

BS, Civil Engineering, University of Illinois, Urbana, IL

Licenses/Certifications:

Professional Engineer: IL, IN, IA, FL, KY, MI, MN,MO, OH, NC, OH, PA, WI, SC, TX, and LA

AHERA Building Inspector: IL and IN

LUST Site Assessor: WI and IN

OSHA 40 Hour HazMat Training

OSHA 8-hour On-site Management & Supervisor Training

HM-126F Safe HazMat Transportation Training

Radon Detection Services

Corrective Actions for Ground Water Contamination

Areas of Expertise:

DANIEL M. CAPLICE

Mr. Caplice is a licensed professional engineer in 13 states with 25 years of environmental engineering and consulting experience. He has an in-depth understanding of local, state and federal regulations and has performed projects in accordance with CERCLA, RCRA, CWA/Oil Pollution Act, CAA, and TSCA requirements. His specialized areas of expertise are evaluation of contaminated properties, assessment of risk and endangerment, regulatory compliance and permitting, hazardous waste management, industrial processes, Brownfield development, water quality, and site management including investigation, remediation, construction management, and monitoring.

Currently Mr. Caplice is President of K-Plus Environmental, a 15 year-old, full service environmental engineering and consulting company with offices in Illinois, Indiana, Wisconsin, North Carolina, South Carolina, and Colorado. As President, Mr. Caplice is responsible for managing and directing the company in addition to his ongoing work.

Prior to joining K-Plus, Mr. Caplice served in several capacities for the USEPA, Region 5, including Manager of the Illinois/Indiana Unit of the Remedial Response Section, Waste Management Division and Manager of the Pre-Remedial Unit, Waste Management Division. As Manager of the Pre-Remedial Unit, Mr. Caplice investigated and assessed abandoned waste sites (CERCLIS sites) for possible inclusion on the National Priorities List. As Manager of the Illinois/Indiana Unit he supervised eight project managers in the technical and legal aspects of site investigation and remediation and he directed the progress at over 40 Superfund sites. As an RPM/OSC he was responsible for the investigation, alternative selection, design, implementation, and enforcement of cleanups at numerous Superfund sites including the Outboard Marine/Waukegan Harbor site, the LaSalle Electric Utilities, Tar Lake, and Verona Well Field. Mr. Caplice also regularly represented the USEPA at the International Joint Commission on Water Quality in the Great Lakes.

REPRESENTATIVE EXPERIENCE

Private Clients

NAMPAC, Ontario, CA

Responsible for assessing and remediating petroleum and chlorinated solvent contamination in soil and groundwater beneath an active plastic manufacturing facility. Developed a plan to stage the cleanup over an 18 month period in order to completely remediate the subsurface contamination to residential objectives without shutting down the facility operations. Developed all project documents including work plans, site assessment reports, remedial design plans, bid specifications, and remedial action completion reports. Met all the requirements of the LARWQCB for site closure.

Rhodia. Chicago Heights, IL

 Mr. Caplice directed the removal of phosphorous from a municipal sewer line after the extremely hazardous substance was identified in the

sediments during the attempted cleaning of the nearly one mile long line. The phosphorous contamination was apparently caused by historic operations at the Rhodia facility that ceased over 50 years beforehand. Because white phosphorous ignites and burns on contact with air, all work was completed either under water or under a nitrogen blanket to prevent spontaneous combustion. Upon completion of the removal and sewer cleaning, all waste was shipped to Sauget, Illinois where it was destroyed in a commercial incinerator.

Yacht Haven Hotel. St. Thomas, U.S. Virgin Islands, PRM Realty

Responsible the remediation of asbestos contamination in a complex that was damaged by hurricane and scheduled for demolition and redevelopment. Designed an abatement and demolition program that called for the controlled demolition of the structure, waste segregation, off-site shipment and off-island disposal of asbestos masonry components, on-site crushing of non-asbestos components, and re-use of crushed materials. The project was complicated by rules prohibiting disposal of contaminated waste on the island as well as working adjacent to the water in the main ocean port for the island.

INX. Charlotte, SC

Took over the design of new ink manufacturing plant after the original engineering firm was fired for failure to complete work on a timely basis. Work included the revision of existing P&ID and general arrangement drawings, completion of process piping drawings, revision of existing equipment list. Preparation of a pipe line index based upon the P&ID's and piping drawings, completion of line size calculations for all piping, and review and approval of all mechanical contractor submittals for process equipment. In addition, all provided technical oversight and management during construction by answering questions from the contractors and completing routine site visits to review the progress of the work and to review schedule and goals with the contractor.

Chemical Plant. Chicago, IL

Provided regular environmental compliance advice to plant personnel to ensure operations are in strict compliance with all applicable environmental rules, regulations, and requirements. In addition to RCRA and CERCLA issues, Mr. Caplice was also called on to be the lead person during the cleanup and investigation following two spills at the plant. Mr. Caplice also evaluated historic operations at the plant that used contaminated raw materials. In that role, he designed and managed the implementation of the controlled decontamination and demolition of three former chemical production lines and ancillary equipment at the facility that were found to be grossly contaminated with an extremely hazardous substance.

National Marine Industrial Site. Seneca, IL

 American Commercial Barge Lines. Following an NPL Site Assessment by the IEPA of this abandoned facility, the project was transferred to the USEPA Region 5's Emergency Response Section as a non-time critical

emergency removal site for cleanup, investigation, and oversight. The 65 acre site located adjacent to the Illinois River was contaminated with PCBs, solvents, pesticides, and lead. Mr. Caplice was responsible for managing all tasks associated with the completion of the Phase I ESA and II ESAs, Site Investigation, Quality Assurance Plan, Remedial Design/Feasibility Analysis, groundwater monitoring, and Emergency Response, and three stages of Remedial Action. He managed the subcontractor agreements, permitting, sampling, testing, and negotiations and coordination with the Agency. He also developed engineering cost estimates for each remedial alternative and evaluated the feasibility of each. A portion of the remedial action included closing three waste treatment lagoons adjacent to the River, on site stabilization of contaminated soil and sludge, installation of slurry walls and engineered caps, and restoration of a forested area. Work was performed in accordance with CERCLA/RCRA/CWA/NCP requirements. Mr. Caplice was responsible for negotiating remedial objectives and closure requirements with the USEPA and IEPA, and at the end of the Project he obtained a complete release from the USEPA and a Comprehensive NFR letter for the entire site from the IEPA.

R. Lavin & Sons. North Chicago, IL, R. Deutsch, Levy & Engel (2004)

Worked as the environmental consultant for the Creditors Committee following the closure of this secondary foundry. Due to this large industrial facility's location near a waterway, the USEPA, IEPA, NSSD, and the U.S. Navy were concerned that material remaining on site would impact surface waters. Facility had numerous issues including exposed piles of slag, pits and tanks containing up to 1.5 million gallons of process water and 2 million gallons of contaminated storm water. Served as expert witness in US Bankruptcy court proceedings, negotiated AOC scope of work with USEPA and DOJ representatives, managed site investigations and remedial action in accordance with RCRA/CERCLA and NCP requirements.

Chicago Service. Bedford Park, IL

Millennium Chemical. This abandoned 15 acre industrial complex large site included five high bay industrial buildings; several ASTs and USTs; over 400 55-gallon unlabeled drums of process chemicals and industrial waste; over 40 in ground pits filled with oil, sludge, and debris; large shot blast equipment; industrial degreasers; and several areas where open dumping of waste had occurred Upon completion of a ESA. Mr. Caplice managed and directed the abatement of asbestos within the buildings, the characterization and disposal of all 55-gallon drums and other discarded process chemicals and industrial waste at the facility, the cleaning and closure of all in-ground pits a detailed subsurface investigation of soil and ground water contamination at the property, and the proper removal and closure of all USTs and ASTs at the property. All LUST incidents were properly closed in full compliance and the site was enrolled into the voluntary Site Remediation Program. Mr. Caplice then prepared full documentation of all remedial and investigative activities at the site and submitted the documentation to the IEPA in order to fulfill Illinois closure requirements and obtain multiple NFR letters documenting the successful completion of the work. Contaminants at the facility included BETX, PNAs, chlorinated solvents and breakdown compounds, and various metals.

Rhodia, Chicago Heights, Dalton, and Blue Island, IL

 Mr. Caplice has been providing ongoing environmental compliance support and management service to the Chicagoland chemical manufacturing facilities for Rhodia. Services include RCRA reporting, annual hazardous waste reports, SPCC Plans, SWPP Plans, Tier I and Tier II Reports, and Toxic Release Inventory (TRI) Reports.

Bowling Products Manufacturer. Lake Bluff Forest, IL

DBA Products. Managed the Site Investigation (Phase II ESA) to evaluate the extent of chlorinated solvent contamination in soil and groundwater; performed a remedial investigation/feasibility study; conducted pre-design investigations, developed an engineering evaluation and cost estimate for remedial alternatives, and provided construction management, sampling and documentation during the remedial action. Remediation consisted of a combination of technologies, low temperature thermal desorption and a gravity-fed groundwater collection system. Secured a Comprehensive NFR letter via the IEPA's SRP program.

Caterair, Inc. Franklin Park, IL

Managed the investigation and cleanup of a large industrial site near O'Hare Airport. Mr. Caplice directed all investigative and cleanup activities and completed all LUST Program and Reimbursement requirements including early action documentation, site investigations, and corrective action (excavation, removal, and risk evaluation) activities. First consultant to receive maximum \$1 million reimbursement approval from the IEPA.

S & C Electric Company, Chicago, IL

 Responsible for completing the RCRA Contingency Plan and SPCCC plan for industrial facility. Also reviewed air permits and completed CAA reporting requirements. Inspected all particle sources and prepared a Fugitive Dust Control Plan.

McCook Metals, McCook, IL

Provided environmental compliance services for operations at this 3 million square foot industrial facility. Work included NPDES monitoring and reporting; MWRD sampling, monitoring, and reporting; annual air emission reports; various Title V compliance reports; and annual hazardous waste reports. Also directed the removal of unused underground storage tanks at the facility and prepared the required LUST compliance reports to document the proper closure. Upon shut-down of the facility, worked with the Bankruptcy Trustee to characterize the remaining environmental liabilities at the site, monitor and direct asbestos abatement activities, and negotiate with MWRD and IEPA officials regarding the closure of the NPDES and DA permits.

Armoloy of Illinois, Inc. DeKalb, IL

 Managed all annual environmental reporting (Form R, Tier II, TRI, and annual Hazardous Waste Report) and permits (FESOP, state operating permits, and annual emissions reports) for this industrial plating facility.

TC Industries Inc. Crystal lake, IL

TC Industries Inc. is one of the largest heat treating facilities in the country. Mr. Caplice managed and directed a Phase I ESA and Compliance Audit of the facility. He also conducted permit reviews (Title V, NPDES, and industrial discharge permitting) for this 600,000 square foot manufacturing plant which included a waste water discharge pre-treatment facility.

Municipalities and Other Government Agencies

Numerous Airports and aviation facilities in IN, IL, WI, and MI Phase I ESAs and NEPA Documentation

Federal Aviation Administration. Program Manager responsible for managing the Phase I ESAs and NEPA Environmental Assessments conducted for airport properties located in Illinois, Michigan, Indiana, and Wisconsin that were owed and/or leased by the FAA for LLWAS, Visual Omni Range with Tactical Air Navigation (VORTAC), and Remote Transmitter/Receiver (RTR) equipment sites.

Supply Side Landfill Monitoring. NAV FAC Midwest. Great Lakes Naval Facility

Performed monthly monitoring of numerous wells and the adjacent stream on the property to fulfill landfill permit requirements. Routinely performed landfill inspections to identify leachate seeps, breaches to the cap and any other abnormality. Completed quarterly reports to the IEPA. Work was completed in accordance with project quality control manual. Completed an alternative analysis and engineering estimates for repairing the landfill cap and some ongoing issues with the landfill.

LaSalle Electric Utility, USEPA Region 5

• Managed the Remedial RI/FS (Investigation/Feasibility Study) of this NPL site in LaSalle, Illinois in order to determine the extent of PCB contamination in the residential neighborhood adjacent to the abandoned electrical equipment manufacturer. After writing the Record of Decision that was approved in Region 5 and in Washington and signed by the Regional Administrator, directed the design of the selected remedial alternative that included construction of an incinerator on the site of the former facility, the excavation of contaminated soil from a four block area of a residential neighborhood, relocation of 20 families from their homes during the project, cleaning of the homes in the area. Work included the indepth and detailed planning and community relations required to gain 100 percent community acceptance of the selected alternative and the plans, and then restoration of the area.

Outboard Marine Corporation (OMC), Waukegan, IL

USEPA Region 5. RPM for this old industrial NPL site that was

contaminated with PCBs. Technical expert for the Agency during negotiations with responsible parties that lasted nearly 3 years. During that time period negotiations included the evaluation of remedial alternatives for PCB contamination in soil and in sediments located in the adjacent harbor. Planning included evaluation of dredging and dewater techniques. evaluation of alternative disposal options for the PCB waste such as in place containment in the waterway, as well as a risk evaluation of the various alternatives. At the same time, Mr. Caplice served as the technical expert for the Agency as it pursued a dual track of litigation to force the responsible party to complete the work. In that capacity, Mr. Caplice prepared technical documents to support submittals of brief and arguments to the U.S. District Court, the U.S. 7th Circuit Court of Appeals, and the U.S. Supreme Court. He also worked with Agency staff in Washington to prepare amendments to Superfund legislation to address some of the issues raised by this site. Upon leaving the Agency in 1988, the USEPA waived its standard conflict of interest rules and allowed the Responsible Party to retain Mr. Caplice to serve as a technical expert during the final stages of negotiations on the cleanup that included dredging of the harbor and ditches, construction of a containment cell in the end of the harbor, and construction of a new slip to replace the one where the containment cell was constructed.

Verona Well Field, Battle Creek, MI

USEPA Region 5. On Scene Coordinator (OSC) for emergency action completed to prevent the loss of entire municipal well field to a plume of chlorinated solvents. After modeling showed that peak summer water demand would accelerate the migration of the contaminate plume into the well field, an emergency action was planned to construct a hydraulic barrier in the well field and protect the majority of the City's potable wells. Mr. Caplice was the OSC that directed the construction of the hydraulic barrier system. The project included the design and construction of a pump station capable of moving 2 million gallons of water daily from a series of existing wells across the well field. Once the target wells were identified, a series of force mains were constructed to re-direct water from the wells to a new reservoir and pump station that then pumped it through a series of carbon filtration units before discharge to the adjacent river until an air stripper could be fabricated to more efficiently remove the contaminants. The entire project was completed in 6 weeks and the system, with some modifications, is still operating today.

Cross Brothers Pail Recycling, Pembrook, IL

USEPA Region 5. RPM for the 20 acre NPL site. The pail and drum reclamation business operated by Cross Brothers at the site from 1961 to 1980. The reclamation operation consisted of placing drums and pails containing dye, ink, and paint residue onto the ground, allowing the contents to drain. Waste solvents were then poured over the containers to dissolve the remaining residue prior to reconditioning the drums. Mr. Caplice was the RPM that coordinated the completion of an RI/FS and then interim remedial measures (IRM) in 1985 to clear the disposal area of vegetation and remove 6,500 tons of contaminated surficial soil, 60 tons of crushed pails, 550 drums contained wastes, and 580 empty drums. Following the completion of the IRM, a hydrogeological study and feasibility study were completed and groundwater was found to be

contaminated with volatile organic compounds (VOCs) such as benzene, toluene, and xylenes and heavy metals including lead and the soil was contaminated with polychlorinated biphenyls (PCBs) and VOCs.

Village of Lombard, IL

 Completed Phase I ESA AND Risk Analysis for proposed property transactions as part of downtown re-development.

Village of Orland Park, IL

 Completed Phase I ESA AND Risk Analysis for proposed property transactions as part of downtown re-development.

Title: Sr. Project Manager

Years Experience: 10+

Education:

BS, Environmental Health Sciences, Illinois State University, Normal, IL

AHERA Building Inspector: IL

OSHA 40 Hour Hazardous Waste Training

OSHA 8-hour Hazardous Waste Training Refresher

Erosion and Sediment Control Course 8-hour AIA Registered.

SUMMARY OF EXPERIENCE

Mrs. Madsen combines scientific expertise and business management skills to meet the due diligence needs for a variety of clients in a professional, time efficient and cost effective manner. Her educational training, project management experience, and communication skills provide a solid foundation to meet the environmental consulting needs of a diverse client base, including customers in banking, real estate development, government and industrial settings. At K-Plus, Ms. Madsen provides her customers with the tools required to make productive environmental decisions.

Ms. Madsen has been in the environmental consulting industry for at least the past ten years, which has cultivated a deep understanding of environmental issues within a business-conscious framework. During her tenure, she has developed outstanding research, field work, data interpretation, technical writing and communication skills, and has been recognized in scientific, government and business publications. Her training includes a bachelors degree in environmental sciences from Illinois State University, where her studies included courses in; Environmental Health Practices, Health Data Analysis, Water Quality and Treatment, Waste Management Practices, Environmental Toxicology, Food Protection, Control of Institutional Environments, Pollution Prevention, Occupational Health, Epidemiology, Decision Processes, as well as, complete courses of study in Chemistry, Physics, Geology, Human Anatomy and Physiology and Biology. Ms. Madsen's extensive curriculum has provided her with a broad base of technical scientific knowledge.

Since becoming an environmental professional, Ms. Madsen has conducted a variety of local and international site assessment activities, including property inspections (Phase I ESAs, TSAs, Phase I Updates and compliance assessments), soil and groundwater investigations, storage tank removals, abandonments and remediation activities. In connection with these tasks, Ms. Madsen has demonstrated her acute technical abilities by designing statistical analyses (including averaging and composite techniques) and modeling contaminant transport patterns, which has allowed her to successfully design and manage site closures in accordance with current federal, state and local environmental regulations.

REPRESENTATIVE EXPERIENCE

Spill Response Remediation and Restoration, Rancho Cordova, CA

Project Manager for the environmental remediation of a large tract of land contaminated by a spill of PCB-contaminated oil. Because the contamination was on private property not owned by the responsible party, the cleanup objective for the work was total removal of all contamination. Mrs. Madsen directed all onsite removal and restoration activities that were completed. All work was completed on an expedited schedule over a holiday weekend.

Former Industrial Facility, Seneca, IL. SRP Site Closure

 Served as Resident Engineer to manage and direct the final phase of an environmental clean up of a former industrial site adjacent to Illinois River. Work involved the testing and removal of soil contaminated by pesticides, followed by site restoration. K-Plus worked under the supervision of the Illinois EPA during the cleanup effort.

Industrial Facility, Skokie, IL

SRP Site Closure

Leaking tanks identified at an adjacent parcel migrated off-site. An extensive subsurface investigation was completed to determine the horizontal and vertical extents of the soil and ground water contamination. During the investigation, secondary surficial soil contamination was identified on the site due to spillage or dumping from the former adhesives manufacturing operations. The site was closed following fate and transport modeling. The closure was achieved with minimal cost to the owner by utilizing land restriction and an engineered barrier and without any active remedial activities. Upon review, the IEPA issued a No Further Remediation (NFR) letter for the property.

Commercial Facility, Melrose Park, IL

Leaking Underground Storage Tank Program

During an environmental assessment of the property, it was determined that the prior use of the property was a gasoline station. Following a magnetometer survey that suggested tanks were still present at the property, Mrs. Madsen directed the removal and destruction of the tanks. During removal activities it was determined that one or more of the tanks had experienced a leak, therefore a Leaking Underground Storage Tank (LUST) incident number was obtained and all affected soils were removed from the property. The site was cleaned to Illinois residential property standards and the Illinois EPA issued a NFR letter with no restrictions

Environmental and Erosion Control Manager.

• Mrs. Madsen worked with Walsh Construction on their North-South Tollway Expansion Project. Mrs. Madsen worked with the Illinois Tollway alongside numerous Agency representatives to organize and protect the sensitive wetland species, as well as, the Hine's Emerald Dragonfly (endangered), identified in the Des Plaines River Valley during the construction of the I-355 Bridge through Lemont, Illinois. The project included the design and implementation of a Maintenance Plan, Environmental-Safety Discussion, Dust Control Plan, Pollution Control Plan, as well as, the implement of the Erosion Control Plan, which was prepared and approved by the IEPA, in coordination with the local Agencies.

National Marine, Wetland Monitoring and Ecological Assessment.

This project was located on the Illinois River within a flood plain. The site contained forested and wetland areas and a variety of vegetation and wildlife. Mrs. Madsen, Project Scientist, was responsible for performing site characterization and water quality investigations and evaluations. Assisted with the natural resource assessments and monitoring. Performed soil, surface water and groundwater sampling. Completed draft reports for submittal to the USEPA under CERCLA.

Federal Agency Experience

Mrs. Madsen has worked on numerous Phase I Environmental Site Assessments for potential cellular tower sites located throughout the Midwest. As part of these projects Mrs. Madsen was required to complete full NEPA screens on these properties in order to receive a Finding of No Significant Impact (FONSI) letter from the FAA.

National Experience

• Mrs. Madsen has traveled to other states in order to conduct Phase II Subsurface Investigations such as: New York, Michigan, Indiana and Texas. With the Subsurface Investigations in foreign states it is necessary to comply with the local state or USEPA regulations, especially when looking at the analysis of lab data. Mrs. Madsen has conducted the research behind the regulations, in order to learn acceptable chemical limits for the soils in each of these states, as well as, completed detailed technical reports which meet those state regulations.